Skip to main content

A Short History of The Preparation of Aerogels and Carbogels

  • Chapter
Sol-Gel Processing and Applications

Abstract

Since their invention by Kistler in 1931, the production of aerogels has been marked by at least two major breakthroughs. In the early thirties inorganic salts were used as precursors in the sol-gel base process involving the formation of an aquagel, then an alcogel and finally an inorganic aerogel. Later, in the late sixties organic precursors were developed which allowed a much shorter route to obtain the aerogel by eliminating the aquagelorga(alco)gel step. These methods can be named high temperature ones. In the middle eighties, a low temperature process was proposed involving a supercritical drying with respect to liquid carbon dioxide. Finally in the late eighties this last process was adapted to the production of organic polymeric aerogels too. In both last cases we propose to call carbogels the ex-CO2 aerogels.

Many examples of processes are described in the full paper concerning especially silica aero-and carbo-gels. Monolithic or powder aero-and carbo-gels will be equally considered. Industrial processes are also briefly depicted (BASF, Airglass, Thermalux and CFT Tech).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Kistler, S.S. 1931. “Coherent expanded aerogels and jellies”. Nature, 127:741.

    Article  CAS  Google Scholar 

  2. Kistler, S.S. 1932. “Coherent expanded aerogels”. J. Phy.s. Chem., 36:52–64.

    Article  CAS  Google Scholar 

  3. Kistler, S.S. September 21,1937. U.S. patent 2,093,454.

    Google Scholar 

  4. Kistler, S.S. January 23, 1940. U.S. patent 2,188,007.

    Google Scholar 

  5. Kistler, S.S. July 22, 1941. U.S. patent 2,249,767.

    Google Scholar 

  6. Kistler, S.S. October 28, 1941. U.S. patent 2,260,625.

    Google Scholar 

  7. Kistler, S.S. March 18, 1952. U.S. patent 2,589,705.

    Google Scholar 

  8. Terwari, P.H., Hunt, A.J. and Lofftus, K.D. 1985. “Ambient temperature supercritical drying of transparent silica aerogels”. Mat. Lett., 3:363–367.

    Article  Google Scholar 

  9. Terwari, P.H. and Hunt, A.J. September 9, 1986. U.S. patent 4,610,863.

    Google Scholar 

  10. Ayen, R.J. and Jacobucci, P.A. 1988. “Metal oxide aerogel preparation bysupercritical extraction”. Rev. Chem. Eng., 5:157–198.

    Article  CAS  Google Scholar 

  11. Marshall, M.D. June 9, 1942, U.S. patent 2,285,449.

    Google Scholar 

  12. Sargent, N.A. and Davis, W.M. January 13, 1959. U.S. patent 2,868,280.

    Google Scholar 

  13. Kistler, S.S., Swann, S. and Appel, E.G. 1934. “Thoria: Preparation of catalyst and conversion of organic acids to ketones”. Ind. and Eng. Chem.. 26:388–391.

    Article  CAS  Google Scholar 

  14. Nicolaon, G.A. and Teichner, S.J. 1968. “Preparation des aerogels de silice a partir d’othosilicate de méthyle en milieu alcoolique et leurs proprietes”. Bull. Soc. Chim. Fr., 5:1906–1911.

    Google Scholar 

  15. Teichner, S.J. and Nicolaon, G.A. Nov. 30, 1969. French patent 1,568,817.

    Google Scholar 

  16. Pajonk, G.M. 1991. “Aerogel catalysts”. Appl. Catal., 72:217–266.

    Article  CAS  Google Scholar 

  17. Pommier, B., Teichner, S.J., Lejay, P., Sulpice, A. and Tournier, R. 1989. “Superconducting materials by aerogel process”. Rev. Phys. App., 24:41–44.

    Google Scholar 

  18. Mukherjee, S.P. 1988. Ultra Structure Processing of Advanced Ceramics, J.D. Mackenzie and D.R. Ulrich, John Wiley, p. 747.

    Google Scholar 

  19. Anderson T.F. 1951. “Techniques for the preservation of three dimensional structure in preparing specimens for the electron microscope”. Trans NY Acad. Sci., 13:130–133.

    Article  Google Scholar 

  20. Anderson, T.F. 1966. Physical Techniques in Biological Research Vol. III, part A. A.W. Pollister ed. Academic Press, New-York, p. 319.

    Google Scholar 

  21. Cohen, A.L. 1977. Scanning Electron Microscopy, Vol. I. O. Johari ed. ITTResearch Institute, Chicago, p. 525.

    Google Scholar 

  22. Bartett, A.A. and Burstry, H.P. 1975. Scanning Electron Microscopy, Part I. O. Johari and J. Corvin eds. ITT Research Institute, Chicago, p. 305.

    Google Scholar 

  23. Tewari, P.H., Hunt, A.J. and Lofftus, K.D. 1986. Aerogels. J. Fricke ed. SpringerVerlag, p. 31.

    Chapter  Google Scholar 

  24. Tewari, P.H., Lofftus, K.D. and Hunt, A.J. 1986. Science of Ceramic Chemistry Proceedings. L.L. Hench and D.R. Ulrich eds. John Wiley, p. 123.

    Google Scholar 

  25. Lewis, E.R., Jackson, L. and Scott, T. 1975. Scanning Electron Microscopy, Part. I. O. Johari and I. Corvin eds. ITT Research Institute, Chicago, p. 317.

    Google Scholar 

  26. Brinker, C.J., Ward, K.J., Kesfer, K.D., Holupka, E., Bray, P.J. and Pearson, R.K. 1986. Aerogels, J. Fricke ed. Springer Verlag, p. 57.

    Chapter  Google Scholar 

  27. Pekala, R.W. and Kong, F.M. 1989. “A synthetic route to organic aerogels-mechanism, structure and properties”. Rev. Phys. App., 24:33–40.

    Google Scholar 

  28. Cheng, C.P., Jacobucci, P.A. and Walsh, E.N. October 28, 1986. U.S. patent 4,619,908.

    Google Scholar 

  29. Graser, F. and Stange, A. May 26, 1987. U.S. patent 4,667,417.

    Google Scholar 

  30. Moses, J.M., Willey, R.J. and Rouanet, S. 1992. “Development and processing of aerogels in a windowed autoclave”. J. Non Cryst. Sol., 145:41–43.

    Article  CAS  Google Scholar 

  31. Elaloui, E., Achard, P., Chevalier, B., Chevalier, J.L., Durant, M. and Pajonk, G.M. 1991. New aerogel for transparent glass spacer. Third Int. Symp. Aerogels, Sept. 30-Oct. 2, 1991. Würzburg FRG.

    Google Scholar 

  32. Tillotson, T.M., Hrubesh, L.W. and Thomas, I.M. 1988. “Partially hydrolyzed alkoxisilanes as precursors for silica aerogels”. Mat. Res. Soc. Symp. Proc., 121:685–689.

    Article  CAS  Google Scholar 

  33. Tillotson, T.M. and Hrubesh, L.W. 1992. “Transparent ultra-low density silica aerogels prepared by a two-step sol-gel process”. J. Non Cryst. Sol., 145:44–50.

    Article  CAS  Google Scholar 

  34. Nguyen, D. and Gowda, G. 1985. “Preparation of silica aerogel insulating material”. J. Canadian Ceramic Soc., 54:40–42.

    CAS  Google Scholar 

  35. Laudise, R.A. and Johnson, D.W. 1986. “Supercritical drying of gels”. J. Non Cryst. Sol., 79:155–164.

    Article  CAS  Google Scholar 

  36. Henning, S. and Svenson, L. 1981. “Production of silica aerogels”. Physic:a Scripta, 23:697–702.

    Article  CAS  Google Scholar 

  37. Schmitt, W.J., Grieger-Block, R.A. and Chapman, T.W. 1983. ChemicalEngineering at Supercritical fluid conditions. M.E. Paulaitis, J.M.L. Penninger, R.D. Gray and P. Davidson eds. Ann Arbor Science. The Butterworth Group, p. 445.

    Google Scholar 

  38. Henning, S. 1986. Aerogels, J. Fricke ed. Springer Verlag, p. 38.

    Chapter  Google Scholar 

  39. Hunt, A.J. and Martin, M. 1991. Proceeding 3rd International Symp. on Aerogels, Sept. 30-Oct. 2, 1991, Würzburg FRG. “Scaling up production of silica aerogels using the CO2substitution method”.

    Google Scholar 

  40. Pajonk, G.M., Elaloü., RAO, A.V. and PAVATHY, N.N. 1993. To bepublished, this symposium.

    Google Scholar 

  41. Poelz, G. and Riethmuller 1981. “Preparation of silica aerogel for Cerenkov counters”. DESY 81–055.FRG.

    Google Scholar 

  42. van Lierop, J.G., Huizing, A., Meerman, W.C.P. and Mulder, C.A.M. 1986. “Preparation of dried monolithic SiO2gel bodies by an autoclave process”. J. Non Crust. Sol., 82:265–270.

    Article  Google Scholar 

  43. Phalippou, J., Woignier and Prassas, M. 1990. “Glasses from aerogels part 1. The synthesis of monolithic silica aerogels”. J. Mat. Sci., 25:3111–3117.

    Article  CAS  Google Scholar 

  44. Woignier, T., Phalippou, J., Quinson, J.F., Pauthe, M. and Laveissiere, F.L. 1992. “Physicochemical transformation of silica gels during hypercritical drying”, J. Non Cryst. Sol., 145:23–32.

    Article  Google Scholar 

  45. Pajonk, G.M. “Preparation and properties of aerogels”. in press.

    Google Scholar 

  46. Hair, L.M.,Pekala, R.W., Stone, R.E., Chen, C. and Buckley, S.R. 1988. “Low density resorcinol-formaldehyde aerogels for direct-drive laser inertial confinement fusion targets”. J. Vac. Sci. Techn., 6:2559–2563.

    Article  CAS  Google Scholar 

  47. Pauthe, M. and Phalippou 1989. “Silica aerogels prepared by hypercritical acetone evacuation”. Rev. Phvs. App., 24:215–220.

    Google Scholar 

  48. Pekala, R.W., Alviso, C.T., Kong, F.M. and Hulsey, S.S. 1992. “Aerogels derived from multifunctional organic monomers”. J. Non Crust. Sol., 145:90–98.

    Article  CAS  Google Scholar 

  49. Alviso, C.T. and Pekala, R.W. 1991. “Melamine-formaldehyde aerogels”. Polym. Prpts, 32:242–243.

    CAS  Google Scholar 

  50. Lindquist, D.A., Smith, D.M., Datye, A.K., Johnston, G.P., Borek, T.T., Schaeffer, R. and Paine, R.T. 1990. “Boron nitride and composite aerogels from borazine based polymers”. Mat. Res. Soc. Sytnp. Proc., 180:1029–1034.

    Article  CAS  Google Scholar 

  51. Lindquist, D.A., Borek, T.T., Kramer, S.J., Narula, C.K., Johnston, G., Schaeffer, R., Smith, D.M. and Paine, R.T. 1990. “Formation and Pore Structure of Boron Nitride Aerogels”. J. Am. Ceram. Soc., 73:757–760.

    Article  CAS  Google Scholar 

  52. Pekala, R.W. October 10, 1989. U.S. patent 4,873,218.

    Google Scholar 

  53. Beghi, M., Chiurlo, P., Costa, L., Palladino, M. and Pirini 1992. “Structural investigation of the silica-titania gel/glass transition”. J. Non Crust. Sol., 145:175–179.

    Article  CAS  Google Scholar 

  54. Cogliati, G., Guglielmi,M., Che, T.M. and Clark, T.J. 1990. “A comparison of aerogels and xerogels”. Mater. Res. Soc. Symp. Proc., 180:329–334.

    Article  CAS  Google Scholar 

  55. Hunt, A.J. and Lofftus, K.D. 1988. “Process considerations in monolithic aerogels”. Mat. Res. Soc. Symp. Proc., 121:679–684.

    Article  CAS  Google Scholar 

  56. Rangarajan, B. and Lira, C.T. 1991. “Production of aerogels”. The J. of Supercritical Fluids, 4:1–6.

    Article  CAS  Google Scholar 

  57. Elaloui, E., Achard, P., Chevalier, B, Chevalier, J.L., Durant, M. and Pajonk, G.M., 1992. “Improved monolithic aerogel for transparent glass spacer in innovative windows”. SPIE, Vol. 1727:402–412

    Article  CAS  Google Scholar 

  58. Ayral, A, Phalippou, J. and Woignier, T. 1992. “Skeletal density of silica aerogels determined by helium pycnometry”. J. Mat. Sci., 27:1 166–1170.

    Article  CAS  Google Scholar 

  59. Phalippou, J., Woignier, T. and Prassas, M. 1989. “The aerogel glass conversion”. Rev. Phys. App., 24:47–52.

    Google Scholar 

  60. Tewari, P.H., Hunt, A.J., Lieber, J.G., Lofftus, K. 1986. Aerogels. J. Fricke ed. Springer-Verlag, p. 142.

    Chapter  Google Scholar 

  61. Damrau, U., Marsmann, H.C., Spormann, O. and Wang, P. 1992 “29Si MAS-NMR investigations of silicaaerogels”, J. Non Cryst. Sol., 145:164–167.

    Article  CAS  Google Scholar 

  62. Deshpande, R., Hua, D.W., Smith, D.M. and Brinker, C.J. 1992. “Pore structure evolution in silica gel during aging/drying. III. Effects of surface tension”. J. Non Crust. Sol., 144:32–44.

    Article  CAS  Google Scholar 

  63. Emmerling, A. and Fricke, J. 1992. “Small angle scattering and the structure of aerogels”. J. Non Crust. Sol., 145:113–120.

    Article  CAS  Google Scholar 

  64. Heinrich, T., Raether, F., Tappert, W. and Frick, J. 1992. “Synthesis and characterization of mullite aerogels”. J. Non Cryst. Sol., 145:55–59.

    Article  CAS  Google Scholar 

  65. Pajonk, G.M. 1989. “Drying methods preserving the textural properties of gels”.Rev. Phvs. Appl., 24:13–22.

    Google Scholar 

  66. Degn Egeberg, E. and Engell, J. 1989. “Freeze drying of silica gels prepared fromsilicium methoxid”. Rev. Phys. Appl., 24:23–28.

    Google Scholar 

  67. Klvana, D., Chaouki, J., Repellin-Lacroix, M. and Pajonk, G.M. 1989. “A newmethod of preparation of aerogel-like materials using a freeze drying process”. Rev. Phvs. Appl., 24:29–32.

    Google Scholar 

  68. Pajonk, G.M., Repellin-Lacroix, M. Abouarnadasse, S., Chaouki, J. and Klvana, D. 1990. “From sol-gel to aerogels and cryogels”. J. Non Cryst. Sol., 121:66–67.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pajonk, G.M. (1994). A Short History of The Preparation of Aerogels and Carbogels. In: Attia, Y.A. (eds) Sol-Gel Processing and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2570-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2570-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6098-8

  • Online ISBN: 978-1-4615-2570-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics