Skip to main content

Plücker Embedding of the Hilbert Space Grassmannian and Boson-Fermion Correspondence via Coherent States

  • Chapter
Quantization and Infinite-Dimensional Systems

Abstract

In this note we give a Plücker type description of the image of the embedding of the Hilbert space grassmannian of Segal and Wilson, obtained by resorting to the theory of quasi-free states of the CAR algebra. We also derive a boson-fermion correspondence via diastatic identities and coherent states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Spera, G. Valli, Remarks on Calabi’s diastasis function and coherent states, Quart. J. Math. 44:497 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Spera, G. Valli, Plücker embedding of the Hilbert space Grassmannian on the CAR Algebra, Preprint (1993).

    Google Scholar 

  3. R.T. Powers, “Representation of the Canonical Anticommutation Relations”Thesis, Princeton University (1967).

    Google Scholar 

  4. R.T. Powers, E. Størmer, Free states of the Canonical Anticommutation Relations Commun. Math. Phys. 16:1 (1970).

    Article  ADS  MATH  Google Scholar 

  5. N. Hugenholtz, R.V. Kadison, Automorphisms and quasi-free states of the CAR Algebra, Commun. Math. Phys. 43:181 (1975).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. A. Pressley, G. Segal, “Loop Groups”Oxford University Press, Oxford, New York, Toronto (1986).

    MATH  Google Scholar 

  7. G. Segal, G. Wilson, Loop groups and equations of KdV type, Publ. Math. IHES 61:5 (1985).

    Google Scholar 

  8. V.G. Kac, D.H. Peterson, Lectures on the infinite wedge representation and the MKP Hierarchy, Sem. Mat. Sup., Presses Univ.Montréal, Montreal, 141–184 (1986).

    Google Scholar 

  9. V.G. Kac, AK. Raina, Bombay Lectures on highest weight representations of infinite dimensional Lie algebras, Adv. Ser. in Math. Phys., vol 2. World Scientific Singapore (1987).

    Google Scholar 

  10. V.G. Kac, J.W. Vande Leur, The n-component KP-hierarchy and representation theory, Preprint (1993).

    Google Scholar 

  11. A. Carey, K.C. Hannabuss, Temperature states on loop groups, theta functions and the Luttinger model, J. Funct. Analysis 75:128 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Carey, K.C. Hannabuss, Simple examples of conformal field theories, Int. J. Mod. Phys. B4:1059 (1990).

    MathSciNet  ADS  Google Scholar 

  13. A. Carey, C.A. Hurst, A note on boson-fermion correspondence and infinite dimensional groups, Commun. Math. Phys. 98:435 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. G. D’Ariano, M. Rasetti, Soliton equations and coherent states, Phys.Lett. 107A:291 (1985).

    MathSciNet  ADS  Google Scholar 

  15. M. Stone, Coherent-state path integrals for loop groups and non abelian bosonisation, Illinois University preprint (1989).

    Google Scholar 

  16. E. Witten, Quantum field theory, Grassmannians, and algebraic curves, Commun. Math. Phys. 113:529 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  17. E. Onofri, A note on coherent state representations of Lie groups, J. Math. Phys. 16:1087 (1975).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. A.M. Perelomov, “Generalized Coherent States and Their Applications”Springer, Berlin, Heidelberg, New York (1986).

    Book  MATH  Google Scholar 

  19. M. Rasetti, Generalized definition of coherent states and dynamical groups, Int. J. Theor. Phys. 13:425 (1974).

    Article  MathSciNet  Google Scholar 

  20. J.H. Rawnsley, Coherent states and Kähler manifolds, Quart. J. Math. Oxford 28:403 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Cahen, S. Gutt, J.H. Rawnsley, Quantization of Kähler manifolds I, II, J.Geom. Phys. 7:45 (1990) and Trans. Amer. Math. Soc. (to appear).

    MathSciNet  ADS  MATH  Google Scholar 

  22. P. Griffiths, J. Harris, “Principles of Algebraic Geometry” Wiley, New York (1978).

    MATH  Google Scholar 

  23. D. Pickrell, Measures on infinite dimensional Grassmannians, J. Funct. Anal. 70:323 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Calabi, Isometric imbeddings of complex manifolds, Ann. Math. 58:1 (1953).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spera, M. (1994). Plücker Embedding of the Hilbert Space Grassmannian and Boson-Fermion Correspondence via Coherent States. In: Antoine, JP., Ali, S.T., Lisiecki, W., Mladenov, I.M., Odzijewicz, A. (eds) Quantization and Infinite-Dimensional Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2564-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2564-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6095-7

  • Online ISBN: 978-1-4615-2564-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics