Skip to main content

Autometallographic (AMG) Nerve Tracing: Demonstration of Retrograde Axonal Transport of Zinc Selenide in Zinc-Enriched (ZEN) Neurons

  • Chapter
Modern Methods in Analytical Morphology

Abstract

Autometallography (AMG) is the technique whereby minute (>0.2 nm) crystal lattices of gold or the selenides and sulphides of silver, mercury and zinc are enlarged by silver amplification to dimensions that can be visualized in the light microscope. The main advantages of the method are its exquisite sensitivity and demonstration of the precise location of the metal lattices which initiate the amplification. Several different AMG protocols are available for both light and electron microscopical use. The basic principles of AMG are demonstrated in Figure 1. These apply to all methods of silver amplification. In short, silver ions adhere to the initiating crystal lattices and are subsequently reduced to silver atoms. The developing process continues as long as there is an adequate supply of silver ions and reducing molecules in the vicinity of the expanding silver grains.

As a practical example of the use of AMG, silver amplification of zinc selenide crystal lattices which have been retrogradely transported and located in lysosomes of zinc enriched neurons (ZEN) will be described. These lattices are created in synaptic vesicles of ZEN neurons by application of exogenous selenium, either as intra-cerebral application of sodium selenide or intraperitoneal (IP) injections of sodium selenite. One to two hours after an IP injection, the chelatable zinc in the synaptic vesicles of the ZEN terminals will have been transformed to zinc selenide crystal lattices. AMG development then provides a detailed map of the ZEN terminal fields throughout the brain. If the animal is allowed to survive for 24 hours, some of the ZEN vesicles (or their content of zinc selenide) have been retrogradely transported to the perinuclear lysosomes, where crystal lattices can be silver amplified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zeiger, Physikochemische Grundlagen der histologischen Methodik, Wiss Forschungsber 48:55 (1938)

    Google Scholar 

  2. F. Timm, Zur Histochemie der Schwermetalle, das Sulfid-Silber-Verfahren, Dtsch Z Gesamte Gerichtl Med 46:706 (1958)

    CAS  PubMed  Google Scholar 

  3. R.E. Liesegang, Die Kolloidchemie der histologischen Silber-Farbungen, Kolloid Beihefte 3:1(1911)

    Article  CAS  Google Scholar 

  4. R.E. RLiesegang, Histologische Versilberungen, Z Wiss Mikrosk 45:273 (1928)

    Google Scholar 

  5. G. Danscher, A silver method for counterstaining plastic embedded tissue. Stain Technol 58:365 (1983)

    CAS  PubMed  Google Scholar 

  6. G. Danscher, Light and electron microscopic localization of silver in biological tissue, Histochemistry 71:177 (1981)

    Article  CAS  PubMed  Google Scholar 

  7. W.J. Roberts, A new procedure for the detection of gold in animal tissue, Proc R Acad Amsterdam 38:540 (1935)

    CAS  Google Scholar 

  8. A. Querido, Gold intoxication of nervous elements. On the permeability of the blood-brain-barrier, Acta Psychiatr 12:151 (1947)

    Google Scholar 

  9. E. Gilg, A photochemical method for microdetection of gold in tissue sections, Acta Psychiatr Scand 27:43 (1952)

    Article  CAS  Google Scholar 

  10. J.L. Doré, The demonstration and distribution of gold in tissue sections. Thesis (London) (1974)

    Google Scholar 

  11. J.L. Doré and B. Vernon-Roberts, A method for the selective demonstration of gold in tissue sections, Med Lab Sci 33:209 (1976)

    PubMed  Google Scholar 

  12. G. Danscher, Localization of gold in biological tissue. A photochemical method for light and electron microscopy, Histochemistry 71:81 (1981)

    Article  CAS  PubMed  Google Scholar 

  13. G. Danscher, Detection of metals in tissues. Histochemical tracing of zinc, mercury, silver and gold, Prog Histochem Cytochem 23:273 (1991)

    Article  CAS  PubMed  Google Scholar 

  14. G. Danscher, Applications of autometallography to heavy metal toxicology, Pharmacology and Toxicology 69:414 (1991)

    Google Scholar 

  15. F. Timm, Histochemische Lokalisation und Nachweis der Schwermetalle, Acta Histochem (Jena) Suppl 3:142 (1962)

    Google Scholar 

  16. F. Timm, Der histochemische Nachweis des Kupfers im Gehirn, Histochemie 2:332 (1961)

    Article  CAS  PubMed  Google Scholar 

  17. G. Danscher, G. Howell, J. Pérez-Clausell, and N. Hertel, The dithizone, Timm’s sulphide silver and the selenium methods demonstrate a chelatable pool of zinc in CNS, Histochemistry 83:419 (1985)

    Article  CAS  PubMed  Google Scholar 

  18. G. Danscher and J. Rungby, Differentiation of histochemicaily visualized mercury and silver, Histochem J 18:109 (1986)

    Article  CAS  PubMed  Google Scholar 

  19. J.D. Schionning, G. Danscher, M.M. Christensen, E. Ernst, and B. Moller-Madsen, Differentiation of silver-enhanced mercury and gold in tissue sections, Histochemical J (in press 1992)

    Google Scholar 

  20. G. Danscher, Exogenous selenium in the brain. A histochemical technique for light and electron microscopical localization of catalytic selenium bonds, Histochemistry 76:281 (1982)

    Article  CAS  PubMed  Google Scholar 

  21. G. Danscher and B. Møller-Madsen, Silver amplification of mercury sulfide and selenide. A histochemical method for light and electron microscopic localization of mercury in tissue, J Histochem Cytochem 33:219 (1985)

    Article  CAS  PubMed  Google Scholar 

  22. T. Shirabe, Identification of mercury in the brain of Minamata disease victims by electron microscopic X-ray microanalysis, Neurotoxicology 1:349 (1979)

    CAS  Google Scholar 

  23. J. Aaseth, A. Olsen, J. Halse, and T. Hovig, Argyria-tissue deposition of silver as selenide. Scand. J Clin Lab Invest 41:247 (1981)

    Article  CAS  PubMed  Google Scholar 

  24. G. Danscher, Histochemical demonstration of heavy metals. A revised version of the sulphide silver method suitable for both light and electron microscopy. Histochemistry 71:1 (1981)

    Article  CAS  PubMed  Google Scholar 

  25. G.W. Hacker, L. Grimelius, G. Danscher, G. Bernatzky, W. Muss, H. Adam, and J. Thurner, Silver acetate autometallography: An alternative enhancement technique for immunogold-silver staining (IGSS) and silver amplification of gold, silver, mercury and zinc in tissues. J Histotechnol 11:213 (1988)

    CAS  Google Scholar 

  26. G.W. Hacker, G. Danscher, A.H. Graf, G. Bernatzky, A. Schiechl, and L. Grimelius, The use of silver acetate autometallography in the detection of catalytic tissue metals and colloidal gold particles bound to macromolecules, Prog Histochem Cytochem 23:286 (1991)

    Article  CAS  PubMed  Google Scholar 

  27. G. Danscher, Dynamic changes in the stainability of rat hippocampal mossy fiber boutons after local injection of sodium sulphide, sodium selenite, and sodium diethyldithiocarbamate, in: “The Neurobiology of Zinc. Part B: Deficiency, Toxicity, and Pathology,” Alan R. Liss, Inc., New York (1984)

    Google Scholar 

  28. G.A. Howell and C.J. Frederickson, A retrograde transport method for mapping zinc-containing fiber systems in the brain, Brain Res 515:277 (1989)

    Article  Google Scholar 

  29. L. Siomianka, G. Danscher, and C.J. Frederickson, Labeling of the neurons of origin of zinc-containing pathways by intraperitoneal injections of sodium selenite, Neuroscience 38:843 (1990)

    Article  Google Scholar 

  30. M.K. Christensen, C.J. Frederickson, and G. Danscher, Retrograde tracing of zinc-containing neurons by selenide ions: A survey of seven selenium compounds, J Histochem Cytochem 40:575 (1992)

    Article  CAS  PubMed  Google Scholar 

  31. E. Skutelsky, V. Goyal, and J. Alroy, The use of avidin-gold complex for light microscopic localization of lectin receptors, Histochemistry 86:291 (1987)

    Article  CAS  PubMed  Google Scholar 

  32. Y.-D. Stierhof, B.M. Humbel, R. Hermann, M.T. Otte, and H. Schwarz, Direct visualization and silver enhancement of ultra-small antibody-bound gold particles on immunolabeled ultrathin resin sections, Scanning Microscopy 6:1009 (1992)

    CAS  Google Scholar 

  33. G. Danscher, G.W. Hacker, L. Grimelius, and J.O.R. Nørgaard, Autometallographic silver amplification of colloidal gold, J Histotechnol, in press (1993)

    Google Scholar 

  34. G. Danscher, Autometallography. A new technique for light and electron microscopic visualization of metals in biological tissues (gold, silver, metal sulphides and metal selenides), Histochemistry 81:331 (1984)

    Article  CAS  PubMed  Google Scholar 

  35. G. Danscher and J.O.R. Nørgaard, Ultrastructural autometallography: A method for silver amplification of catalytic metals, J Histochem Cytochem 33:706 (1985)

    Article  CAS  PubMed  Google Scholar 

  36. F.M.S. Haug, Heavy metals in the brain. A light microscope study of the rat with Timm’s sulphide silver method. Methodological considerations and cytological and regional staining patterns, Adv Anat Embryol Cell Biol 47:1 (1973)

    Google Scholar 

  37. F.A. Geneser-Jensen, F.-M.S. Haug, and G. Danscher, Distribution of heavy metals in the hippocampal region of the guinea-pig. A light microscope study with Timm’s sulphide silver method, Z Zellforsch 147:441 (1974)

    Article  CAS  PubMed  Google Scholar 

  38. M.D. Cassell and M.W. Brown, The distribution of Timm’s stain in the nonsulphide-perfused human hippocampal formation, J Comp Neurol 22:461 (1984)

    Article  Google Scholar 

  39. B. Friedman and J.L. Price, Fiber systems in the olfactory bulb and cortex: A study in adult and developing rats, using the Timm method with the light and electron microscope, J Comp Neurol 223:88 (1984)

    Article  CAS  PubMed  Google Scholar 

  40. M.J. West, F.B. Gaarskjaer, and G. Danscher, The Timm-stained hippocampus of the European hedgehog: A basal mammalian form, J Comp Neurol 226:447 (1984)

    Article  Google Scholar 

  41. W.K. Schwerdtfeger, G. Danscher, and H. Geiger, Entorhinal and prepiriform cortices of the European hedgehog. A histochemical and densitometric study based on a comparison between Timm’s sulphide silver method and the selenium method, Brain Res 348:69 (1985)

    Article  CAS  PubMed  Google Scholar 

  42. A. Molowny and C. Lopez-Garcia, Estudio citoarquitectonico de la corteza cerebral de reptiles. III. Localizatiön histoquimica de metales pesados y definitiön de subregiones Timm-positivas de la corteza de Lacerta, Chalcides, Tarentola y Malpolon, Trab Inst Cajal Invest Biol 70:55 (1978)

    Google Scholar 

  43. C. Lopez-Garcia, E. Soriano, A. Molowny, J.M. Garcia Verdugo, P. Berbel, and J. Regidor, The Timm positive system of axonic terminals of the cerebral cortex of Lacerta, in: “Ramön y Cajal’s Contribution to the Neurosciences,” S. Grisolia, C. Guerri, F. Samson, S. Norton and F. Reinoso-Suarez, eds., Elsevier Science Publishers, B.V., Amsterdam (1983)

    Google Scholar 

  44. J. Pérez-Clausell, Organization of zinc-containing terminal fields in the brain of the lizard Podarcis hispanica: A histochemical study, J Comp Neurol 167:153 (1988)

    Article  Google Scholar 

  45. H. Faber, K. Braun, W. Zuschratter, and H. Scheich, System-specific distribution of zinc in the chick brain. A light and electron microscopic study using Timm’s method, Cell and Tissue Res 258:247 (1989)

    CAS  Google Scholar 

  46. W.J.A.J. Smeets, J. Perez-Clausell, and F.A. Geneser, The distribution of zinc in the forebrain and midbrain of the lizard Gekko gekko. A histochemical study, Anat Embryol 180:45 (1989)

    Article  CAS  PubMed  Google Scholar 

  47. C. Piñuela, E. Baatrup, and F.A. Geneser, Histochemical distribution of zinc in the brain of the rainbow trout, Oncorhyncus myciss: I. The telencephalon, Anat Embryol 186:275 (1992)

    Article  PubMed  Google Scholar 

  48. L. Slomianka, Neurons of origin of zinc-containing pathways and the distribution of zinc-containing boutons in the hippocampal region of the rat, Neuroscience 48:325 (1992)

    Article  CAS  PubMed  Google Scholar 

  49. C.J. Frederickson and G. Danscher, Zinc-containing neurons in hippocampus and related CNS structures, Prog Brain Res 83:71 (1990)

    Article  CAS  PubMed  Google Scholar 

  50. T.G. Smart, Uncultured lobster muscle, cultured neurons and brain slices: the neurophysiology of zinc, J Pharm Pharmacol 42:377 (1990)

    Article  CAS  PubMed  Google Scholar 

  51. G.L. Westbrook and M.L. Mayer, Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons, Nature 328:640 (1987)

    Article  CAS  PubMed  Google Scholar 

  52. J.F. Hamilton and P.G. Logel, The minimum size of silver and gold nuclei for silver physical development, Photogr Sci Eng 18:507, (1974)

    CAS  Google Scholar 

  53. I.E. Holm, A. Andreasen, G. Danscher, J. Pérez-Clausell, and H. Nielsen, Quantification of vesicular zinc in the rat brain, Histochemistry 89:289 (1988)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Danscher, G. (1994). Autometallographic (AMG) Nerve Tracing: Demonstration of Retrograde Axonal Transport of Zinc Selenide in Zinc-Enriched (ZEN) Neurons. In: Gu, J., Hacker, G.W. (eds) Modern Methods in Analytical Morphology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2532-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2532-5_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6079-7

  • Online ISBN: 978-1-4615-2532-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics