Skip to main content

Force, Displacement, and Acceleration Sensors

  • Chapter
Integrated Optics, Microstructures, and Sensors

Abstract

This chapter discusses fiber optic and integrated optic sensor concepts. Force, displacement, and acceleration sensors are closely related. A displacement sensor may be used as a force sensor if we know precisely the mechanical constants of the sensor. A force sensor always implies displacement (even if this is not of interest and it may be extremely small). The relation between force and displacement in a force or displacement sensor depends on the sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Schonenberger and S. F. Alvarado, “A Differential Interferometer for Force Microscopy.” Rev. Sci. Instrum. Vol. 60 (10), p.p.3131–3134 (1989).

    Article  Google Scholar 

  2. R. Erlandsson, G. M. McClelland, C. M. Mate and S. Chiang, “Atomic Force Microscopy sing Optical Interferometry.” J. Vac. Sci. Technol. A 6 (2), p.p.266–270 (1988).

    Article  Google Scholar 

  3. Y. Martin, C. C. Williams and H. K. Wickramasinghe, “Atomic Force Microscope-Force Mapping and Profiling on a Sub 100-A Scale.” J. Appl. Phys. 61 (10), p.p.4723–4729 (1987).

    Article  Google Scholar 

  4. R. M. DeLaRue, R. F. Humphryes, I. M. Mason and E. A. Ash Proc. IEEE 119, p. 117 (1972).

    Google Scholar 

  5. C. A. Putman, B. G. De Grooth, N. F. Van Hulst, and J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy.” J. Appl. Phys. Vol. 72 (1), p.p. 6–12 (1992).

    Article  Google Scholar 

  6. A. D. Kersey, F. Bucholtz, K. Sinansky and A. Dandridge, “Interferometric Sensors for DC Measurands-A new class of fiber sensors.” Fiber Optic and Laser Sensors IV, Ramon P. De Paula, Eric Udd, Editors, Proc. SPIE Vol. 718, p.p. 198--202 (1987).

    Article  Google Scholar 

  7. N. Lagakos, and J. A. Bucaro, “Optimizing Fiber Optic Microbend Sensors.” Fiber Optic and Laser Sensors IV, Ramon P. De Paula, Eric Udd, Editors, Proc. SPIE Vol. 718, p.p. 12–20 (1987).

    Article  Google Scholar 

  8. A. Garcia-Valenzuela, and M. Tabib-Azar, “Fiber Optic Force and Displacement Sensor based on Speckle Detection with 0.1 Nano-Newton and 0.1 Angstrom Resolution.” Sensors and Actuators A. Physical, Vol. 36 (3), p.p.199–208 (1993).

    Article  Google Scholar 

  9. Ura, T. Suhara, and H. Nishiara, “Integrated-Optic interferometer Position Sensor”, Journal of Lightwave Technology, Vol. 7 (2), p.p.270–273 (1989).

    Google Scholar 

  10. K. T. V. Grattan, A. W. Palmer, D. P. S. Saini, “Fiber-optic Evanescent -Wave Coupling Force Transducer.” Proc. SPIE Vol. 586 Optic Sensors, p. 128 (1985).

    Google Scholar 

  11. Spillman Jr. W. and McMahon D.H., “Frustrated-Total Internal Reflection Multimode Fiber-Optic Hydrophone.” Appl. Opt. 20, p.p. 3600–3604 (1981)

    Article  Google Scholar 

  12. M. Izutsu, A. Enokihara, and T. Sueta, “Optical-Waveguide Micro-Displacement Sensor.” Electron. Lett., Vol. 18 (20), p.p. 867–868 (1982).

    Article  Google Scholar 

  13. S. Ura, T. Suhara, and H. Nishihara, “Integrated-Optic Interferometer Position Sensor.” Journal of Lightwave Technology, Vol. 7 (2), p.p. 270–273 (1989).

    Article  Google Scholar 

  14. S. Valette, et al., “Silicon-Based Integrated Optics Technology for Optical Sensor Applications.” Sensors and Actuators, A21–A23, p.p. 1087–1091 (1990).

    Article  Google Scholar 

  15. K. Fritsch and G. Beheim, “Wavelength-Division Multiplexed Digital Optical Position Transducer.” Opt. Lett., Vol. 11, p.p. 1–3 (1986).

    Article  Google Scholar 

  16. R.D. Dechstedt and D.A. Jackson, “Performance Analysis of a Fiber Optic Accelerometer Based on a Compliant Cylinder Design.” Rev. Sci. Instrum. 66 (1), p.p.207–214 (1995).

    Article  Google Scholar 

  17. F.A. Castro, S.R.M. Carneiro, O. Lisboa, and S.L.A. Carrara, “Two-Mode Optical Fiber Accelerometer.” Opt. Lett. 17 (20), p.p.1474–1475 (1992).

    Article  Google Scholar 

  18. Masashi Okawa, Musayuhi Izutsu, and Tadasi Sueta, “Integrated Optic Accelerometer Employing a Cantilever on a Silicon Substrate.” Jap. J. Appl. Phys. 28(2), p.p.287–288, 1989.

    Google Scholar 

  19. K.E. Burcham, G.N. De Brabander, and J.T. Boyd, “Micromachined Silicon Cantilever Beam Accelerometer Incorporating an Integrated Optical Waveguide.” Integrated Optics and Microstructures, Proc. SPIE, Vol. 1793, p.p. 12–18, 1992.

    Article  Google Scholar 

  20. U. Durig, D. W. Pohl, and F. Rohner, J. Appl. Phys. 59, pp. 3318 1986

    Article  Google Scholar 

  21. R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, and T. L. Ferrell, “Photon Scanning Tunneling Microscopy.” Rev. Sci. Instrum. Vol. 61 (12), p.p.669–3677 (1990).

    Google Scholar 

  22. D. W. Pohl, W. Denk, and M. Lanz, “Optical Stethoscopy: Image Recording with Resolution V20.” Appl. Phys. Lett. Vol. 44 (7), p. 651 (1984).

    Google Scholar 

  23. W. Lukosz and P. Pliska, “Integrated optical interferometer as a ligth modulator and microphone.” Sensors and Actuators A, Vol. 25–25, p.p. 337–340 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garcia-Valenzuela, A., Tabib-Azar, M. (1995). Force, Displacement, and Acceleration Sensors. In: Integrated Optics, Microstructures, and Sensors. The Springer International Series in Engineering and Computer Science, vol 332. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2273-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2273-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9621-5

  • Online ISBN: 978-1-4615-2273-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics