Skip to main content

Phonons and Electron-Phonon Interaction in Low-Dimensional Structures

  • Chapter
Confined Electrons and Photons

Part of the book series: NATO ASI Series ((NSSB,volume 340))

Abstract

Through this book, the reader meets many different examples of ‘low dimensional systems’, where the reduced dimensionality arises from spatial confinement —along one or more directions— of different elementary excitations. One is then interested in knowing the effects of confinement on their energy spectrum, and also on their interaction with other excitations and with external electromagnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. Jusserand and M. Cardona, Raman spectroscopy of vibrations in superlattices, in: “Light Scattering in Solids V”, edited by M. Cardona and G. Güntherodt, Springer, Berlin (1989), p. 49. A general review, with emphasis on light scattering experiments.

    Chapter  Google Scholar 

  2. B. Jusserand and D. Paquet, Confined and propagative vibrations in superlattices, in: “Semiconductor Heterojunctions and Superlattices”, edited by G. Allan et al., Springer, Berlin (1986), p. 108. The focus is on analogies between lattice-dynamical and electronic properties of superlattices in terms of simple models.

    Chapter  Google Scholar 

  3. J. Menéndez, Phonons in GaAs/Al x Ga 1™x As superlattices, J. Luminesc. 44, 285 (1989). A broad review of theoretical and experimental results, with emphasis on optical modes (including anisotropy related to macroscopic fields) and resonant Raman experiments.

    Article  Google Scholar 

  4. S. Baroni, P. Pavone, P. Giannozzi, S. de Gironcoli, and E. Molinari, Ab initio calculation of phonon spectra in semiconductors: from pure crystals to alloys and superlattices, in “Proc. of the International School of Physics ‘Enrico Fermi’, Course CXVII”, edited by A. Stella and L. Miglio, North-Holland, Amsterdam (1993), p. 243. An introductory explanation of modern theoretical approaches to the vibrational properties of AlGaAs alloys and superlattices. Disorder effects on the phonon spectra are also discussed.

    Google Scholar 

  5. J.A. Kash and J.C. Tsang, Light scattering and other secondary emission studies of dynamic processes in semiconductors, in: “Light Scattering in Solids VI”, edited by M. Cardona and G. Güntherodt, Springer, Berlin (1993), p. 423. Specific sections review time-resolved spectroscopies as probes of the dynamics of non-equilibrium phonon populations. Electron-phonon and phonon-phonon interaction mechanisms are discussed for bulk semiconductors as well as low-dimensional structures.

    Google Scholar 

References

  1. G. E. Stillman and C.M. Wolfe, Electrical characterization of epitaxial layers, Thin Solid Films 31, 69 (1976).

    Article  Google Scholar 

  2. L. Pfeiffer, K.W. West, H.L. Stormer, and K.W. Baldwin, Electron mobilities exceeding 107 cm2/V s in modulation-doped GaAs, Appl. Phys. Lett. 55, 1888 (1989).

    Article  Google Scholar 

  3. See e.g. C. Weisbuch and B. Vinter, “Quantum Semiconductor Structures. Fundamentals and Applications”, Academic Press (1991), Chapter 4.

    Google Scholar 

  4. The use of complex band dispersions is a standard approach since the early studies of surface problems: see e.g. T.E. Feuchtwang, Dynamics of a semi-infinite crystal lattice in a quasiharmonic approximation. II. The normal-mode analysis of a semiinfinite crystal, Phys. Rev. 155, 731 (1967).

    Article  Google Scholar 

  5. See also: N.W. Ashcroft and N.D. Mermin, “Solid State Physics”, Saunders College (1981), p. 368.

    Google Scholar 

  6. P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Ab initio calculation of phonon dispersions in semiconductors, Phys. Rev. B43, 7231 (1991).

    Google Scholar 

  7. See e. g.: P. Brüesch, “Phonons: Theory and Experiments II. Experiments and Interpretation of Experimental Results”, Springer, Berlin (1986), and references therein.

    Google Scholar 

  8. See e.g.: P. Brüesch, “Phonons: Theory and Experiments I. Lattice Dynamics and Models of Interatomic Forces”, Springer, Berlin (1986), and references therein.

    Google Scholar 

  9. A. Fasolino, E. Molinari, and K. Kunc, Planar force constant method for lattice dynamics of superstructures, Phys. Rev. B41, 8302 (1990).

    Google Scholar 

  10. K. Kunc, Recent results in semiconductor dynamics by ab initio ‘direct’ approach, in: “Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter”, edited by J.T. Devreese and P.E. van Camp, Plenum, New York (1985), p. 221.

    Google Scholar 

  11. See e.g.: C. Colvard, T.A. Gant, M.V. Klein, R. Merlin, R. Fischer, H. Morkoc, and A.C. Gossard, Folded acoustic and quantized optical phonons in (GaAl)As superlattices, Phys. Rev. B31, 2080 (1985).

    Google Scholar 

  12. E. Molinari, S. Baroni, P. Giannozzi, and S. de Gironcoli, Phonon spectra of ultrathin GaAs/AlAs superlattices, in “Light Scattering in Semiconductor Structures and Superlattices”, edited by D.J. Lockwood and J.F. Young, Plenum Press, New York (1991), p. 39.

    Google Scholar 

  13. M. Born and K. Huang, “Dynamical Theory of Crystal Lattices”, Oxford University Press, Oxford (1954).

    MATH  Google Scholar 

  14. See also: N.W. Ashcroft and N.D. Mermin, “Solid State Physics”, Saunders College (1981), p. 547 ff.

    Google Scholar 

  15. See e.g. chapter 11.4 in: H. Ibach and H. Lüth, “Solid State Physics”, Springer, Berlin (1981).

    Google Scholar 

  16. See e. g. E. Burstein, A. Hartstein, J. Schönwald, A.A. Maradudin, D.L. Mills, and R.F. Wallis, Surface polaritons. Electromagnetic waves at interfaces, in “Polaritons”, edited by E. Burstein and F. de Martini, Pergamon Press, New York (1974), p. 89.

    Google Scholar 

  17. W. Cochran and R.A. Cowley, J. Chem. Phys. Solids 23, 447 (1962).

    Article  Google Scholar 

  18. S. de Gironcoli, and S. Baroni, Effects of disorder on the vibrational properties of SiGe alloys: Failure of mean field approximations, Phys. Rev. Lett. 69, 1959 (1992)

    Article  Google Scholar 

  19. S. de Gironcoli, and S. Baroni, Effects of local atomic coordination on the vibrational properties of SiGe alloys, in “Proc. XXI International Conference on the Physics of Semiconductors, Beijing, China”, edited by Ping Jiang and Hou-Zhi Zheng, World Scientific, Singapore (1992), p. 109.

    Google Scholar 

  20. S. Baroni, S. de Gironcoli, and P. Giannozzi, Phonon dispersions in Ga x Al l™x As alloys, Phys. Rev. Lett. 65, 84 (1990).

    Article  Google Scholar 

  21. see e.g. “Optical Properties of Mixed Crystals”, edited by R.J. Elliot and I.P. Ipatova, North-Holland, Amsterdam (1988), p. 35; in particular the article by D.W. Taylor.

    Google Scholar 

  22. N. Meskini and K. Kunc, Interpolation, extrapolation, and scaling laws in lattice dynamics of isoelectronic compounds, Technical Report n. 5, Université P. et M. Curie, Paris (1978), unpublished.

    Google Scholar 

  23. R. Schorer, G. Abstreiter, S. de Gironcoli, E. Molinari, H. Kibbel, and H. Presting, Inplane Raman scattering of(001)-Si/Ge superlattices: Theory and experiments, Phys. Rev. B49, 5406 (1994).

    Google Scholar 

  24. J.A. Kash, J.M. Hvam, J.C. Tsang, and T.F. Kuech, Localization and wave-vector conservation for optical phonons in Al x Ga l™x As and thin layers of GaAs, Phys. Rev. B38, 5776 (1988).

    Google Scholar 

  25. B. Jusserand, D. Paquet, and F. Mollot, Dispersive character of optical phonons in GaAlAs alloys from Raman scattering in superlattices, Phys. Rev. Lett. 63, 2397 (1989).

    Article  Google Scholar 

  26. B. Jusserand, F. Mollot, L. Quagliano, G. Le Roux, and R. Planel, Damping of optical phonons in Ga l™x Al x As alloys, Phys. Rev. Lett. 67, 2803 (1991).

    Article  Google Scholar 

  27. see e.g. G.C. Osbourn, Strained-layer superlattices: a brief review, IEEE J. Quantum Electron. QE-22, 1677 (1986).

    Article  Google Scholar 

  28. E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollak, and M. Cardona, Effect of static uniaxial stress on the Raman spectrum of silicon, Solid State Commun. 8, 133 (1970).

    Article  Google Scholar 

  29. F. Cerdeira, C.J. Buchenauer, F.H. Pollak, and M. Cardona, Stress-induced shifts of first-order Raman frequencies of diamond-and zinc-blende-type semiconductors, Phys. Rev. B5, 580 (1972).

    Google Scholar 

  30. see e.g. E.M. Anastassakis, Morphic effects in lattice dynamics, in: “Dynamical Properties of Solids, vol. 4”, edited by G.K. Horton and A.A. Maradudin, North-Holland, Amsterdam (1980), p. 157.

    Google Scholar 

  31. A. Qteish and E. Molinari, Interplanar forces and phonon spectra of strained Si and Ge: Ab initio calculations and applications to Si/Ge superlattices, Phys. Rev. B42, 7090 (1990).

    Google Scholar 

  32. S. de Gironcoli, Phonons in Si-Ge systems: An ab-initio interatomic-force-constant approach, Phys. Rev. B46, 8962 (1992).

    Google Scholar 

  33. P.A. Knipp and T.L. Reinecke, Coupling of electrons to interface phonons in semiconductors quantum wells, Phys. Rev. B48, 12338 (1993).

    Google Scholar 

  34. Hanyou Chu and Yia-Chung Chang, Phonon-polariton modes in superlattices: The effect of spatial dispersion, Phys. Rev. B38, 12369 (1988).

    Google Scholar 

  35. E. Molinari and A. Fasolino, Calculated phonon spectra of Si/Ge (001) superlattices: Features for interface characterization, Appl. Phys. Lett. 54, 1220 (1989).

    Article  Google Scholar 

  36. G. Scamarcio, V. Spagnolo, E. Molinari, L. Tapfer, L. Sorba, G. Bratina, and A. Franciosi, Phonons in Si/GaAs superlattices, Phys. Rev. B46, 7296 (1992).

    Google Scholar 

  37. A. Fasolino, E. Molinari, and J.C. Maan, Resonant quasiconfined optical phonons in semiconductor superlattices, Phys. Rev. B39, 3923 (1989).

    Google Scholar 

  38. A. Fasolino, E Molinari, and J.C. Maan, Calculated superlattice and interface phonons of InAs/GaSb superlattices, Phys. Rev. B33, 8889 (1986).

    Google Scholar 

  39. A. Pinczuk and E Burstein, Fundamentals of inelastic light scattering in semiconductors and insulators, in: “Light Scattering in Solids”, edited by M. Cardona, Springer, Berlin (1975), p. 23.

    Google Scholar 

  40. B. Jusserand, D. Paquet, J. Kervarec, and A. Regreny, Raman scattering study of acoustical and optical folded modes in GaAslGaAlAs superlattices, Journal de Physique (Colloque) 4, C5–145 (1984).

    Google Scholar 

  41. E Molinari, S. Baroni, P. Giannozzi, and S. de Gironcoli, Effects of disorder on the Raman spectra of GaAs/AlAs superlattices, Phys. Rev. B45, 4280 (1992).

    Google Scholar 

  42. D.J. Mowbray, M. Cardona, and K. Ploog, Confined LO phonons in GaAs/AlAs superlattices, Phys. Rev. B43, 1598 (1991).

    Google Scholar 

  43. E Merzbacher, “Quantum Mechanics”, Wiley, New York (1961), p. 107.

    MATH  Google Scholar 

  44. See e.g. C. Weisbuch and B. Vinter, “Quantum Semiconductor Structures. Fundamentals and Applications”, Academic Press (1991), Chapter 4, pp. 37 ff.

    Google Scholar 

  45. G. Bastard, “Wave Mechanics Applied to Semiconductor Heterostructures”, Les Editions de 1a Physique, Les Ulis (1990).

    Google Scholar 

  46. R. Schorer, G. Abstreiter, S. de Gironcoli, E Molinari, H. Kibbel, and E Kasper, Vibrational properties of Si/Ge superlattices: Theory and in-plane Raman scattering experiments, Solid State Electronics 37, 757 (1994).

    Article  Google Scholar 

  47. B.V. Shanabrook, B.R. Bennet, and R.J. Wagner, Planar vibrational modes in superlattices, Phys. Rev. B48, 17172 (1993).

    Google Scholar 

  48. see e.g. D.W. Taylor, Dynamics of impurities in crystals, in: “Dynamical Properties of Solids, vol. 2”, edited by G.K. Horton and A.A. Maradudin, North-Holland, Amsterdam (1975), p. 287.

    Google Scholar 

  49. E Molinari and A. Fasolino, Phonons of ideal (001) superlattices: Application to Si/Ge, in: “Spectroscopy of Semiconductor Microstructures”, edited by G. Fasol, A. Fasolino, and P. Lugli, Plenum, New York (1989), p. 195.

    Google Scholar 

  50. S. de Gironcoli, E. Molinari, R. Schorer, and G. Abstreiter, Interface mode in Si/Ge superlattices: Theory and experiments, Phys. Rev. B48, 8959 (1993).

    Google Scholar 

  51. H. Rücker, E. Molinari, and P. Lugli, Microscopic calculation of the electron-phonon interaction in quantum wells, Phys. Rev. B45, 6747 (1992).

    Google Scholar 

  52. E Molinari, C. Bungaro, F. Rossi, L. Rota, and P. Lugli, Phonons in GaAs/AlAs nanostructures: from two-dimensional to one-dimensional systems, in “Phonons in Semiconductor Nanostructures”, edited by J.P. Leburton, J. Pascual, and C. Sotomayor Torres, NATO ASI Series E: Applied Sciences — Vol. 236, Kluwer, Dordrecht (1993).

    Google Scholar 

  53. A.K. Sood, J. Menéndez, M. Cardona, and K. Ploog, Resonance Raman scattering by confined LO and TO phonons in GaAs-AlAs superlattices, Phys. Rev. Lett. 54, 2111 (1985)

    Article  Google Scholar 

  54. A.K. Sood, J. Menéndez, M. Cardona, and K. Ploog, Interface vibrational modes in GaAs-AlAs superlattices, Phys. Rev. Lett. 54, 2115 (1985).

    Article  Google Scholar 

  55. G. Scamarcio, M. Haines, G. Abstreiter, E. Molinari, S. Baroni, A. Fischer, and K. Ploog, Micro-Raman scattering in ultrathin-layer superlattices: Evidence of zone-center anisotropy of optical phonons, Phys. Rev. B47, 1483 (1993).

    Google Scholar 

  56. for a recent collection of papers on the subject see: “Phonons in Semiconductor Nanostructures”, edited by J.P. Leburton, J. Pascual, and C. Sotomayor Torres, NATO ASI Series E: Applied Sciences — Vol. 236, Kluwer, Dordrecht (1993).

    Google Scholar 

  57. V. Narayanamurti, H.L. Störnier, M.A. Chin, A.C. Gossard, and W. Wiegmann, Selective transmission of high frequency phonons by a superlattice: The “dielectric” phonon filter, Phys. Rev. Lett. 43, 2012 (1979). Note that the analogy with optical filters was very clear already in this letter. The denomination ‘dielectric phonon filter’ was chosen ‘because of the close analogy with optical dielectric filters’.

    Article  Google Scholar 

  58. M.S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites, Phys. Rev. Lett. 71, 2022 (1993).

    Article  Google Scholar 

  59. B.A. Auld, “Acoustic Fields and Waves in Solids”, Wiley, New York (1973).

    Google Scholar 

  60. E. Yablonovich, Photonic bandagaps and semiconductor quantum electronics, this volume.

    Google Scholar 

  61. For cylindrical wires see e.g. P.E. Selbmann and R. Enderlein, Scattering of carriers from confined and interface phonons of a quantum wire, Superlatt. and Microstr. 12, 219 (1992).

    Article  Google Scholar 

  62. P.A. Knipp and T.L. Reinecke, Electron-phonon scattering rates in quantum wires, Phys. Rev. B48, 5700 (1993).

    Google Scholar 

  63. R. Englman and R. Ruppin, Optical lattice vibration infinite ionic crystals, J. Phys. C 1, 614 (1968).

    Article  Google Scholar 

  64. see e.g. P.A. Knipp and T.L. Reinecke, Classical interface modes of quantum dots, Phys. Rev. B46, 10310 (1992), and references therein.

    Google Scholar 

  65. P. Vogl, The electron-phonon interaction in semiconductors, in “Physics of Nonlinear Transport in Semiconductors”, edited by D.K. Ferry, J.R. Barker, and C. Jacoboni, Plenum, New York (1980), and references therein.

    Google Scholar 

  66. B.K. Ridley, “Quantum Processes in Semiconductors”, Clarendon, Oxford (1988).

    Google Scholar 

  67. See, e.g., J. Shah, Hot carriers in quasi-2D polar semiconductors, IEEE J. Quantum Electron. QE-22, 1728 (1986).

    Article  Google Scholar 

  68. L. Rota, F. Rossi, P. Lugli, E. Molinari, S.M. Goodnick, and W. Porod, Monte Carlo simulation of a ‘true’ quantum wire, in “Advanced semiconductor epitaxial growth processes and lateral and vertical fabrication”, edited by R.J. Malik et al., SPIE Vol. 1676 (1992), p. 161.

    Google Scholar 

  69. U. Bockelmann and G. Bastard, Phonon scattering and energy relaxation in two-, one-and zero-dimensional electron gases, Phys. Rev. B42, 8947 (1990).

    Google Scholar 

  70. N. Mori and T. Ando, Electron—optical-phonon interaction in single and double heterostructures, Phys. Rev. B40, 6175 (1989).

    Google Scholar 

  71. L.F. Register, Microscopic basis for a sum rule for polar-optical-phonon scattering of carriers in heterostructures, Phys. Rev. B45, 8756 (1992).

    Google Scholar 

  72. K. Huang and B. Zhu, Dielectric continuum model and Frölich interaction in superlattices, Phys. Rev. B38, 13377 (1988).

    Google Scholar 

  73. J. Shah, A. Pinczuk, A.C. Gossard, and W. Wiegmann, Energy-loss rates for hot electrons and holes in GaAs quantum wells, Phys. Rev. Lett. 54, 2045 (1985).

    Article  Google Scholar 

  74. K. Leo, W.W. Rühle, and K. Ploog, Hot-carrier energy-loss rates in GaAs/Al x Ga l™x As quantum wells, Phys. Rev. B38, 1947 (1988).

    Google Scholar 

  75. J.F. Ryan and M. Tatham, Picosecond optical studies of 2D-electron 2D-phonon dynamics, Solid State Electron. 32, 1429 (1989), and references therein.

    Article  Google Scholar 

  76. R. Cingolani, H. Lage, L. Tapfer, H. Kalt, D. Heitmann, and K. Ploog, Quantum confined one-dimensional electron-hole plasma in semiconductor quantum-wires, Phys. Rev. Lett. 67, 891 (1991).

    Article  Google Scholar 

  77. M. Oestreich, W.W. Rüble, H. Lage, D. Heitmann, and K. Ploog, Reduced excitonexciton scattering in quantum wires, Phys. Rev. Lett. 70, 1682 (1993).

    Article  Google Scholar 

  78. G. Mayer, F.E. Prins, G. Lehr, H. Schweizer, H. Leier, B.E. Maile, J. Straka, A. Forchel, and G. Weimann, Carrier relaxation in intermixed GaAs/AlGaAs quantum wires, Phys. Rev. Lett. B47, 4060 (1993).

    Google Scholar 

  79. U. Bockelmann, Inelastic scattering and thermalization in low dimensional III-V semiconductor structures, this volume.

    Google Scholar 

  80. H. Benisty, C.M. Sotomayor Torres, and C. Weisbuch, Intrinsic mechanism for the poor luminescence properties of quantum box systems, Phys. Rev. B44, 10945 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Molinari, E. (1995). Phonons and Electron-Phonon Interaction in Low-Dimensional Structures. In: Burstein, E., Weisbuch, C. (eds) Confined Electrons and Photons. NATO ASI Series, vol 340. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1963-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1963-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5807-7

  • Online ISBN: 978-1-4615-1963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics