Skip to main content

Atomic-Like Spectroscopy of Low-Dimensional Electron Systems

  • Chapter
Confined Electrons and Photons

Part of the book series: NATO ASI Series ((NSSB,volume 340))

Abstract

Novel and unique properties of layered two-dimensional semiconductor structures with quantum confined energy states have challenged scientists to prepare and study systems with further reduced dimensionality, specifically quantum wires and quantum dots. In these systems, the original free dispersions of the electrons in the lateral directions are also quantized due to an additional lateral confinement. One ultimate limit is a quantum dot, where, induced by a confining potential in both the x- and y-directions, artifical ‘atoms’ with a totally discrete energy spectrum, are formed.1–9 (The growth direction is labeled z in the following.) Typical confinement energies are in the few-meV regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Reed, J. N. Randall, R. J. Aggarwal, R.J. Matyi, T.M. Moore, and A. E. Wetsel, Observation of Discrete Electronic States in a Dimensional Semiconductor Nanostructure, Phys. Rev. Lett. 60, 535 (1988)

    Article  Google Scholar 

  2. T.P. Smith, III., K.Y. Lee, C.M. Knoedler, J.M. Hong, and D.P. Kern, Electronic spectroscopy of zero-dimensional systems, Phys. Rev. B38, 2172 (1988)

    Google Scholar 

  3. W. Hansen, T.R Smith, III., K.Y. Lee, J.A. Brum, C.M. Knoedler, J.M. Hong, and D.P. Kern, Zeeman Bifurcation of Quantum-Dot Spectra, Phys. Rev. Lett. 62, 2168 (1989)

    Article  Google Scholar 

  4. Ch. Sikorski and U. Merkt, Spectroscopy of Electronic States in InSb Quantum Dots, Phys. Rev. Lett. 62, 2164 (1989)

    Article  Google Scholar 

  5. T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Nonlocal Dynamic Response and Level Crossing in Quantum-Dot Structures, Phys. Rev. Lett. 64, 788 (1990)

    Article  Google Scholar 

  6. A. Lorke, J.P. Kotthaus, and K. Ploog, Coupling of Quantum Dots on GaAs, Phys. Rev. Lett. 64, 2559 (1990).

    Article  Google Scholar 

  7. J. Alsmeier, E. Batke, and J.P. Kotthaus, Voltage-tunable quantum dots on silicon, Phys. Rev. B41, 1699 (1990).

    Google Scholar 

  8. B. Meurer, D. Heitmann, and K. Ploog, Single-Electron Charging of Quantum-Dot Atoms, Phys. Rev. Lett. 68, 1371 (1992).

    Article  Google Scholar 

  9. D. Heitmann, K. Kern, T. Demel, P. Grambow, K. Ploog, and Y.H. Zhang, Spectroscopy of quantum dots and antidots, Surface Sci. 267, 245 (1992)

    Article  Google Scholar 

  10. B. Meurer, Ferninfrarot-Spektroskopie von niedigdimensionalen Systemen mit abstimmbarer Elektronendichte, PhD-Thesis, Stuttgart, Germany 1992.

    Google Scholar 

  11. I. Giaever and H. R. Zeller, Superconductivity of small tin particles measured by tunneling, Phys. Rev. Lett. 20, 1504 (1968).

    Article  Google Scholar 

  12. For recent work see e.g. R. Wilkens, E. Ben-Jacob, and R.C. Jaklevic, Scanning-Tunneling-Microscope Observations of Coulomb Blockade and Oxide Polarisation in Small Metal Droplets, Phys. Rev. Lett. 63, 801 (1989) and references therein.

    Article  Google Scholar 

  13. H. van Houten and C. W. J. Beenaker, Comment on “Conductance Oscillations Periodic in the Density of a One-Dimensional Electron Gas”, Phys. Rev. Lett. 63, 1893 (1989)

    Article  Google Scholar 

  14. R.H. Silsbee and R.C. Ashoori, Comment on “Zeeman Bifurcation of Quantum-Dot Spectra”, Phys. Rev. Lett. 64, 1991 (1990)

    Article  Google Scholar 

  15. R.C. Ashoori, R.H. Silsbee, L.N. Pfeiffer, and K. West, in “Nanostructures and Mesoscopic Systems”, Academic Press, Eds. M. Reed and W. Kirk, 1991.

    Google Scholar 

  16. R.C. Ashoori, H.L. Störnier, J.S. Weiner, L.N. Pfeiffer, S.J. Pearton, K.W. Baldwin, and K.W. West, Single-Electron Capacitance Spectroscopy of Discrete Quantum Levels, Phys. Rev. Lett. 68, 3088 (1992).

    Article  Google Scholar 

  17. U. Meirav, M. A. Kastner, and S. J. Wind, Single-Electron Charging and Periodic Conductance Resonances in GaAs Nanostructures, Phys. Rev. Lett. 65, 771 (1990).

    Article  Google Scholar 

  18. T. Demel, D. Heitmann, P. Grambow, and K. Ploog, One-dimensional electronic systems in ultrafine mesa-etched single and multiple quantum well wires, Appl. Phys. Lett. 53, 2176 (1988).

    Article  Google Scholar 

  19. K.-F. Berggren, T.J. Thornton, D.J. Newson, and M. Pepper, Magnetic Depopulation of ID Subbands in a Narrow 2D Electron Gas in a GaAs:AlGaAs Heterojunction, Phys. Rev. Lett. 57, 1769 (1986).

    Article  Google Scholar 

  20. S.J. Allen, Jr., H.L. Störnier, and J.C. Hwang, Dimensional resonance of the twodimensional electron gas in selectively doped GaAs/AlGaAs heterostructures, Phys. Rev. B28, 4875 (1983).

    Google Scholar 

  21. D.C. Glattli, E.Y. Andrei, G. Deville, J. Poitrenaud, and F.I.B. Williams, Dynamical Hall Effect in a Two-Dimensional Classical Plasma, Phys. Rev. Lett. 54, 1710 (1985).

    Article  Google Scholar 

  22. D.B. Mast, A.J. Dahm, and A.L. Fetter, Observation of Bulk and Edge Magnetoplasmons in a Two-Dimensional Electron Fluid, Phys. Rev. Lett. 54, 1706 (1985).

    Article  Google Scholar 

  23. V. Shikin, T. Demel, and D. Heitmann, Plasma and single particle excitations in quasione-dimensional electron systems, Surf. Sci. 229, 276 (1990).

    Article  Google Scholar 

  24. A.L. Fetter, Edge magnetoplasmons in a bounded two-dimensional electron fiuid, Phys. Rev. B32, 7676 (1985), Magnetoplasmons in a two-dimensional electron fluid: Disk geometry, Phys. Rev. B33, 5221 (1986).

    Google Scholar 

  25. V.B. Sandomirskii, V.A. Volkov, G.R. Aizin, and S.A. Mikhailov, Electrochimica Acta 34, 3 (1989).

    Article  Google Scholar 

  26. V. Shikin, S. Nazin, D. Heitmann, and T. Demel, Dynamic response of quantum dots, Phys. Rev. B43, 11903 (1991).

    Google Scholar 

  27. A. Kumar, S.E. Laux, and F. Stern, Electron states in a GaAs quantum dot in a magnetic field, Phys. Rev. B42, 5166 (1990).

    Google Scholar 

  28. V. Fock, Bemerkungen zur Quantelung des harmonisches Oszillators im Magnetfeld, Z. Phys. 47, 446 (1928).

    Article  MATH  Google Scholar 

  29. G.W. Bryant, Electronic Structure of Ultrasmall Quantum-Well Boxes, Phys. Rev. Lett. 59, 1140 (1987).

    Article  Google Scholar 

  30. P. Maksym and T. Chakraborty, Quantum Dots in a Magnetic Field: Role of Electron-Electron Interactions, Phys. Rev. Lett. 65, 108 (1990).

    Article  Google Scholar 

  31. U. Merkt, J. Huser, and M. Wagner, Energy spectra of two electrons in a harmonic quantum dot, Phys. Rev. B43, 7320 (1991).

    Google Scholar 

  32. D. Pfannkuche and R.R. Gerhardts, Quantum-dot helium: Effects of deviations from a parabolic confinement potential, Phys. Rev. B44, 13132 (1991).

    Google Scholar 

  33. L. Brey, N. Johnson, and P. Halperin, Optical and magneto-optical absorption in parabolic quantum wells, Phys. Rev. B40, 10647 (1989).

    Google Scholar 

  34. P. Ruden and G.H. Döhler, Electronic excitations in semiconductors with doping superlattices, Phys. Rev. B27, 3547 (1983).

    Google Scholar 

  35. W. Kohn, Cyclotron Resonance and de Haas-van Alphen Oscillations of an Interacting Electron Gas, Phys. Rev. 123, 1242 (1961).

    Article  MATH  Google Scholar 

  36. V. Gudmundsson and R.R. Gerhardts, Self-consistent model of magnetoplasmons in quantum dots with nearly parabolic confinement potentials, Phys. Rev. B43, 12098 (1991).

    Google Scholar 

  37. D. Pfannkuche, V. Gudmundsson, and P. Maksym, Comparison of a Hartree, a Hartree-Fock, and an exact treatment of quantum-dot Helium, Phys. Rev. B47, 2244 (1993).

    Google Scholar 

  38. B. A. Wilson, S. J. Allen, Jr., and D. C. Tsui, Evidence for a magnetic-field-induced Wigner glass in the two-dimensional electron system in Si inversion layers, Phys. Rev. B24, 5887 (1981).

    Google Scholar 

  39. U. Merkt, Ch. Sikorski, and J. Alsmeier, in Spectroscopy of Semiconductor Microstructures, edited by G. Fasol, A. Fasolino, and P. Lugli (Plenum, New York, 1989), p. 89.

    Google Scholar 

  40. K. Ensslin, D. Heitmann, H. Sigg, and K. Ploog, Cyclotron resonance in Al x Ga1™ x As-GaAs heterostructures with tunable charge density via front gates, Phys. Rev. B36, 8177 (1987).

    Google Scholar 

  41. K. Kern, D. Heitmann, P. Grambow, Y. H. Zhang, and K. Ploog, Collective Excitations in Antidots, Phys. Rev. Lett. 66, 1618 (1991).

    Article  Google Scholar 

  42. E. Batke, D. Heitmann, J.K. Kotthaus, and K. Ploog, Nonlocality in the Two-Dimensional Plasmon Dispersion, Phys. Rev. Lett. 54, 2367 (1985).

    Article  Google Scholar 

  43. P. Grambow, Technologie und Untersuchung nanostrukturierter Halbleitersysteme, PhD-Thesis, Darmstadt, Germany 1992

    Google Scholar 

  44. T. Demel, D. Heitmann, P. Grambow, and K. Ploog, One-Dimensional Plasmons in AlGaAs/GaAs Quantum Wires, Phys. Rev. Lett. 66, 2657 (1991).

    Article  Google Scholar 

  45. P. Grambow, V. Gudmundson, B. Meurer, R.R. Gerhardts, D. Heitmann, D. Pfannkuche, and K. Ploog, to be published

    Google Scholar 

  46. K. Karrai, H.D. Drew, H.W. Lee, and M. Shayegan, Magnetoplasma effects in a quasithree-dimensional electron gas, Phys. Rev. B39, 1426 (1989).

    Google Scholar 

  47. A. Wixforth, M. Sundaram, K. Ensslin, J.H. English, and A.C. Gossard, Gatecontrolled subband structure and dimensionality of the electron system in a wide parabolic quantum well, Appl. Phys. Lett. 56, 454 (1990).

    Article  Google Scholar 

  48. T. Ando, A.B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54, 437 (1982)

    Article  Google Scholar 

  49. P. Kneschaurek, A. Kamgar, and J.F. Koch, Electronic levels in surface space charge layers on Si(100), Phys. Rev. B14, 1610 (1976).

    Google Scholar 

  50. B.D. McCombe, R.T. Holm, and D.E. Schafer, Frequency domain studies of intersubband optical transitions in Si inversion layers, Solid State Commun. 32, 603 (1979).

    Article  Google Scholar 

  51. D. Heitmann, J.P. Kotthaus, and E.G. Mohr, Plasmon dispersion and intersubband resonance at high wavevectors in Si(100) inversion layers, Solid State Commun. 44, 715 (1982).

    Article  Google Scholar 

  52. D. Heitmann and U. Mackens, Grating-coupler-induced intersubband resonances in electron inversion layers of silicon, Phys. Rev. B33, 8269 (1986).

    Google Scholar 

  53. See the contribution of J.-Y. Duboz in this volume

    Google Scholar 

  54. D.C. Tsui, S.J. Allen, Jr., R.A. Logan, A. Kamgar, and S.N. Coppersmith, High frequency conductivity in silicon inversion layers: Drude relaxation, 2D plasmons and minigaps in a surface superlattice, Surf. Sci. 73, 419 (1978).

    Article  Google Scholar 

  55. W.P. Chen, Y.J. Chen, and E. Burstein, The interface EM modes of a “surface quantized” plasma layer on a semiconductor surface, Surf. Sci. 58, 263 (1976).

    Article  Google Scholar 

  56. T. Ando, Inter-Subband Optical Absorption in Space-Charge Layers on Semiconductor Surfaces, Z. Phys. B26, 263 (1977)

    Google Scholar 

  57. S.J. Allen, Jr., D.C. Tsui, and B. Vinter, On the absorption of infrared radiation by electrons in semiconductor inversion layers, Solid State Commun. 20, 425 (1976).

    Article  Google Scholar 

  58. T. Ando, T. Eda, and M. Nakayama, Optical absorption in surface space-charge layers of anisotropic and tilted valley systems, Solid State Commun. 23, 751 (1977).

    Article  Google Scholar 

  59. A. Wixforth, Habilitation thesis, Munich 1993, see also Ref. 46.

    Google Scholar 

  60. D. Heitmann, Collective and single particle excitations in low-dimensional systems, in: Physics of Nanostructures, ed. by J.H. Davies and A.R. Long, publ. by The Scottish Universities Summer School in Physics, Edinburgh and IOP Publishing Ltd, London, p.229. 1992.

    Google Scholar 

  61. K. Kempa, D. A. Broido, and P. Bakshi, Spontaneous polarisation in quantum-dot systems, Phys. Rev. B43, 9343 (1991).

    Google Scholar 

  62. C. Dahl, J.P. Kotthaus, H. Nickel, and W. Schlapp, Coulomb coupling in arrays of electron disks, Phys. Rev. B46, 15590 (1992).

    Google Scholar 

  63. M. Wagner, U. Merkt, and A.V. Chaplik, Spin-singlet-spin-triplet oscillation in quantum dots, Phys. Rev. B45, 1591 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heitmann, D. (1995). Atomic-Like Spectroscopy of Low-Dimensional Electron Systems. In: Burstein, E., Weisbuch, C. (eds) Confined Electrons and Photons. NATO ASI Series, vol 340. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1963-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1963-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5807-7

  • Online ISBN: 978-1-4615-1963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics