Skip to main content

Identification, Biological Functions, and Contribution to Human Diabetes of Islet-Brain 1

  • Chapter
  • First Online:
Molecular Basis of Pancreas Development and Function

Part of the book series: Endocrine Updates ((ENDO,volume 11))

  • 173 Accesses

Abstract

The GLUT2 glucose transporter isoform is important for control of glucose homeostasis in vertebrates (1). GLUT2 facilitates the entry of glucose through the plasma membrane of cells found in liver, kidney, small intestine, some restricted areas of the brain, and in the pancreatic β-cells (1,2). The regulated expression of GLUT2 has been extensively studied in vitro and in a number of animal models that have an unbalanced glucose homeostasis. In freshly isolated pancreatic islets or in insulinoma cells, GLUT2 gene expression is positively modulated by glucose (3). In hepatocytes, glucose metabolism upregulates GLUT2 gene expression as assessed by run-on transcription assays (4-6). While glucose increases GLUT2 gene expression in vitro, several reports demonstrate that diabetic hyperglycemia is associated with reduced GLUT2 transcripts in —cells. This has been observed in the neonatal low-dose streptozotocin (STZ)-induced diabetic rat, the GK rat, the db/db mouse, the BB/W rat and the Zucker diabetic fa/fa rat (7-10). Interestingly, GLUT2 suppression by hyperglycaemia is specific to β-cells, and GLUT2 expression remains unchanged in liver or kidneys of diabetic animals (11-13). Apart from GLUT2, several other β-cell expressed genes were also found to be dysregulated in the pancreatic islets of the diabetic animals (14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thorens B. Molecular and cellular physiology of GLUT2, a high Km facilitated diffusion glucose transporter. Int Review of Cytology 1992;137A:209–237.

    Article  CAS  Google Scholar 

  2. Leloup C, Arluison M, Lepetit N, Cartier N, Marfaing-Jallat P, Ferre P, et al. Glucose transporter 2 (GLUT2): expression in specific brain nuclei. Brain Research 1994;638:221–226.

    Article  PubMed  CAS  Google Scholar 

  3. Asano T, Katagiri H, Tsukuda K, Lin JL, Ishihara H, Yazaki Y, et al. Upregulation of GLUT2 mRNA by glucose, mannose, and fructose in isolated rat hepatocytes. Diabetes 1992;41:22–25.

    Article  PubMed  CAS  Google Scholar 

  4. Rencurel F, Waeber G, Antoine B, Rocchiccioli F, Maulard P, Girard J. Requirement of glucose metabolism for regulation of glucose transporter type 2 (GLUT2) gene expression in liver. Biochem J 1996;314:903–909.

    PubMed  CAS  Google Scholar 

  5. Rencurel F, Waeber G, Bonny C, Antoine B, Maulard P, Girard J, et al. Cyclic adenosine monophosphate prevents the glucose-mediated stimulation of GLUT2 gene transcription in hepatocytes. Biochem J 1997;322:441–448.

    PubMed  Google Scholar 

  6. Waeber G, Thompson N, Haefliger J-A, Nicod P. Characterization of the murine high Km glucose transporter GLUT2 gene and its transcriptional regulation by glucose in a differentiated insulin-secreting cell line. J Biol Chem 1994;269:26912–26919.

    PubMed  CAS  Google Scholar 

  7. Orci L, Unger RH, Ravazzola M, Ogawa A, Komiyia I, Baetens D, et al. Reduced B-cell glucose transporter in new onset diabetic BB rats. J Clin Invest 1990;86:1615–1622.

    Article  CAS  Google Scholar 

  8. Ohneda M, Johnson JH, Inman LR, Chen L, Suzuki KI, Goto Y, et al. GLUT2 expression and function in ß-cells of GK rats with NIDDM. Diabetes 1993;42:1065–1072.

    Article  PubMed  CAS  Google Scholar 

  9. Johnson JH, Ogawa A, Chen L, Orci L, Newgard CB, Alam T, et al. Underexpression of b-cell high Km glucose transporters in non insulin-dependent diabetes. Science 1990;250:546–548.

    Article  PubMed  CAS  Google Scholar 

  10. Thorens B, Wu Y-J, Leahy JL, Weir GC. The loss of GLUT2 expression by glucose-unresponsive f3-cells of db/db mice is reversible and is induced by the diabetic environment. J Clin Invest 1992;90:77–85.

    Article  PubMed  CAS  Google Scholar 

  11. Oka Y, Asano T, Shibasaki Y, Lin J-L, Tsukuda T, Akanuma Y, et al. Increased liver glucose-transporter protein and mRNA in streptozocin-induced diabetic rats. Diabetes 1990;39:441–446.

    Article  PubMed  CAS  Google Scholar 

  12. Burcelin R, Eddouks M, Kandé J, Assan R, Girard J. Evidence that GLUT2 mRNA and protein concentrations are decreased by hyperinsulinemia and increase by hyperglycemia in liver of diabetic rats. Biochem J 1992;288:675–679.

    PubMed  CAS  Google Scholar 

  13. Dominguez JH, Camp K, Maianu L, Feister H, Garvey WT. Am J Physiol 1994;266:F283–290.

    Google Scholar 

  14. Tokuyama Y, Sturis J, DePaoli AM, Takeda J, Stoffel M, Tang J, et al. Evolution of 13-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes 1995;44:1447–1457.

    Article  PubMed  CAS  Google Scholar 

  15. Gremlich S, Bonny C, Waeber G, Thorens B. Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin and somatostatin levels. J Biol Chem 1997;272:30261–30269.

    Article  PubMed  CAS  Google Scholar 

  16. Takeda J, Kayano T, Fukomoto H, Bell GI. Organization of the human GLUT2 (pancreatic 13-cell and hepatocyte) glucose transporter gene. Diabetes 1993;42:773–777.

    Article  PubMed  CAS  Google Scholar 

  17. Ahn Y-h, Kim J-W, Han G-S, Lee B-G, Kim YS. Cloning and characterization of rat pancreatic I3-cell/liver type glucose transporter gene: a unique exon/intron organization. Arch Bioch and Biophysics 1995; 323:387–396.

    Article  CAS  Google Scholar 

  18. Leibiger B, Leibiger IB. Functional analysis of DNA-elements involved in transcriptional control of the human glucose transporter 2 (GLUT2) gene in the insulin-producing cell line I3TC3. Diabetologia 1995;38:112–115.

    Article  PubMed  CAS  Google Scholar 

  19. Leonard J, Peers B, Johnson T, Ferreri K, Lee S, Montminy MR. Characterization of somatostatin transactivating factor-1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells. Mol Endo 1993;7:1275–1283.

    Article  CAS  Google Scholar 

  20. Miller CP, McGehee RE, Jr, Habener JF. IDX-1: a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. EMBO J 1994;13:1145–1156.

    PubMed  CAS  Google Scholar 

  21. Ohlsson H, Karlsson K, Edlund T. IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J 1993;12:4251–4259.

    PubMed  CAS  Google Scholar 

  22. Waeber G, Thompson N, Nicod P, Bonny C. Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol Endo 1996;10:1327–1334.

    Article  CAS  Google Scholar 

  23. Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H. Beta-cell specific inactivation of the mouse IPFI/PDX1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev 1998;15:1763–1768.

    Article  Google Scholar 

  24. Bonny C, Thompson N, Nicod P, Waeber G. Pancreatic-specific expression of the glucose transporter type 2 gene: identification of cis-elements and islet-specific trans-acting factors. Mol Endo 1995;9:1413–1426.

    Article  CAS  Google Scholar 

  25. Waeber G, Pedrazzini T, Bonny O, Bonny C, Steinmann M, Nicod P, et al. A 338 bp proximal fragment of the glucose transporter type 2 (GLUT2) promoter drives reporter gene expression in the pancreatic islets of transgenic mice. Mol Cell Endocrinol 1995;114:205–215.

    Article  PubMed  CAS  Google Scholar 

  26. Bonny C, Roduit R, Gremlich S, Nicod P, Thorens B, Waeber G. The loss of GLUT2 expression in the pancreatic _cells of diabetic db/db mice is associated with an impaired DNA-binding activity of islet-specific trans-acting factors. Mol Cell Endocrinol 1997;135:59–65.

    Article  PubMed  CAS  Google Scholar 

  27. Bonny C, Nicod P, Waeber G. IB1, a JIP-1 related nuclear protein present in insulin-secreting cells. J Biol Chem 1998;273:1843–1846.

    Article  PubMed  CAS  Google Scholar 

  28. Singh H, LeBowitz JH, Baldwin AS, Sharp PA. Molecular cloning of an enhancer binding protein: isolation by screening of an expression library with a recognition site DNA. Cell 1988;52:415–423.

    Article  PubMed  CAS  Google Scholar 

  29. Dickens M, Rogers JS, Cavanagh J, Raitano A, Xia Z, Halpern JR, et al. A cytoplasmic inhibitor of the JNK signal transduction pathway. Science 1997;277:693–696.

    Article  PubMed  CAS  Google Scholar 

  30. Waeber G, Delplanque J, Bonny C, Mooser V, Steinmann M, Widman C, et al. The gene MAPK81Pi, encoding islet-Brain1, is a candidate for type 2 diabetes. Nature Genetics 2000;24:291–295.

    Article  PubMed  CAS  Google Scholar 

  31. Mooser V, Maillard A, Bonny C, Steinmann M, Shaw P, Yarnall DP, et al. Genomic organization, fine-mapping, and expression of the human islet-brain 1 (IB1)/c-Jun-amino-terminal kinase interacting protein-1 (JIP-1) gene. Genomics 1999;15:202–208.

    Article  Google Scholar 

  32. Ip YT, Davis RJ. Signal transduction by the c-Jun N terminal kinase (JNK)-from inflammation to development. Current Opinion in Cell Biology 1998;10:205–219.

    CAS  Google Scholar 

  33. DeFronzo RA. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Reviews 1997;5:177–269.

    Google Scholar 

  34. Kahn BB. Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance. Cell 1998;92:593–596.

    Article  PubMed  CAS  Google Scholar 

  35. Polonsky KS, Sturis J, Bell GI. Non-Insulin-Dependent Diabetes Mellitus: a genetically programmed failure of beta cells to compensate for insulin resistance. N Engl J Med 1996;334:777–783.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Waeber, G., Bonny, C. (2001). Identification, Biological Functions, and Contribution to Human Diabetes of Islet-Brain 1. In: Habener, J.F., Hussain, M.A. (eds) Molecular Basis of Pancreas Development and Function. Endocrine Updates, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1669-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1669-9_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5669-1

  • Online ISBN: 978-1-4615-1669-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics