Skip to main content

Models of Cardiac Disease in the Mouse

Cardiac Hypertrophy and Heart Failure

  • Chapter
  • First Online:
Cardiovascular Physiology in the Genetically Engineered Mouse

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 238))

Abstract

Over the past decade the use of genetically engineered mouse models has led to considerable progress in understanding the pathophysiology of a variety of human diseases. Ability to manipulate the genome has allowed analysis of effects not only of gain or loss of the target gene function, but also actions of mutant alleles identified in human diseases. With regard to the cardiovascular system, although the mouse exhibits differences from humans in physiological variables and intracellular structure and function (e.g. isoforms of myosin heavy chain, relative contribution of sarcoplasmic reticulum (SR) to intracellular calcium regulation), a variety of approaches have been miniaturized for physiological studies in the mouse heart along with application to the mouse of methods for studying isolated cardiac muscle and cardiomyocytes. These approaches are listed in Table 19-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chien KR. Stress pathways and heart failure. Cell. 1999;98:555–558.

    Article  PubMed  CAS  Google Scholar 

  2. Towbin JA. The role of cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol. 1998;10:131–139.

    Article  PubMed  CAS  Google Scholar 

  3. Hunter JJ, K.R. C. Signaling pathway for cardiac hypertrophy and failure. N Eng J Med. 1999;341:1276–1283.

    Article  CAS  Google Scholar 

  4. Fatkin D, Seidman JD, Seidman CE. Hypertrophic Cardiomyopathy. In: Willerson JT, Cohn JN, eds. Cardiovascular Medicine. Phyladelphia, Pennsylvania: W.B. Saunders Co.; 2000:1055–1075.

    Google Scholar 

  5. Seidman CE, Seidman JG. Molecular genetics of inherited cardiomyopathies. In: Chien KR, ed. Molecular basisi of cardiobascular disease. Philadelphia: W.B.Saunders.; 1999:251–263.

    Google Scholar 

  6. Mayon BJ. Hypertrophic cardiomyopathy [published erratum appears in Lancet 1997 Nov 1;350(9087):1330]. Lancet. 1997;350:127–133.

    Article  Google Scholar 

  7. McMinn TR, Jr., Ross J, Jr. Hereditary dilated cardiomyopathy. Clin Cardiol. 1995;18:7–15.

    Article  PubMed  Google Scholar 

  8. Ikeda Y, Ross J, Jr. Models of dilated cardiomyopathy in the mouse and the hamster. Curr Opin Cardiol. 2000;15:197–201.

    Article  PubMed  CAS  Google Scholar 

  9. Sylvius N, Tesson F, Gayet C, et al. A New Locus for Autosomal Dominant Dilated Cardiomyopathy Identified on Chromosome 6q12-q16. Am J Hum Genet. 2000;68.

    Google Scholar 

  10. Tesson F, Sylvius N, Pilotto A, et al. Epidemiology of desmin and cardiac actin gene mutations in a European population of dilated cardiomyopathy. Eur Heart J. 2000;21:1872–1876.

    Article  PubMed  CAS  Google Scholar 

  11. Chen J, Chien KR. Complexity in simplicity: monogenic disorders and complex cardiomyopathies. J Clin Invest. 1999;103:1483–1485.

    Article  PubMed  CAS  Google Scholar 

  12. Mogensen J, Klausen IC, Pedersen AK, et al. Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest. 1999;103:R39–43.

    Article  PubMed  CAS  Google Scholar 

  13. Kumar A, Crawford K, Close L, et al. Rescue of cardiac alpha-actin-deficient mice by enteric smooth muscle gamma-actin. Proc Natl Acad Sci U S A. 1997;94:4406–4411.

    Article  PubMed  CAS  Google Scholar 

  14. Olson TM, Michels VV, Thibodeau SN, et al. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science. 1998;280:750–752.

    Article  PubMed  CAS  Google Scholar 

  15. McConnell BK, Jones KA, Fatkin D, et al. Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice. J Clin Invest. 1999;104:1235–1244.

    Article  PubMed  CAS  Google Scholar 

  16. Sussman MA, Welch S, Cambon N, et al. Myofibril degeneration caused by tropomodulin overexpression leads to dilated cardiomyopathy in juvenile mice. J Clin Invest. 1998;101:51–61.

    Article  PubMed  CAS  Google Scholar 

  17. Straub V, Campbell KP. Muscular dystrophies and the dystrophin-glycoprotein complex. Current Opinion in Neurology. 1997;10:168–175.

    Article  PubMed  CAS  Google Scholar 

  18. Hoffman EP, Brown RH, Jr., Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51:919–928.

    Article  PubMed  CAS  Google Scholar 

  19. Ortiz-Lopez R, Li H, Su J, et al. Evidence for a dystrophin missense mutation as a cause of X-linked dilated cardiomyopathy. Circulation. 1997;95:2434–2440.

    Article  PubMed  CAS  Google Scholar 

  20. Muntoni F, Cau M, Ganau A, et al. Brief report: deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy. N Engl J Med. 1993;329:921–925.

    Article  PubMed  CAS  Google Scholar 

  21. Towbin JA, Hejtmancik JF, Brink P, et al. X-linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation. 1993;87:1854–1865.

    Article  PubMed  CAS  Google Scholar 

  22. Melacini P, Fanin M, Duggan DJ, et al. Heart involvement in muscular dystrophies due to sarcoglycan gene mutations. Muscle & Nerve. 1999;22:473–479.

    Article  CAS  Google Scholar 

  23. Barresi R, DiBlasi C, Negri T, et al. Disruption of heart sarcoglycan complex and severe cardiomyopathy caused by beta sarcoglycan mutations. J Med Genet. 2000;37:102–107.

    Article  PubMed  CAS  Google Scholar 

  24. Dincer P, Akcoren Z, Demir E, et al. A cross section of autosomal recessive limb-girdle muscular dystrophies in 38 families. J Med Genet. 2000;37:361–367.

    Article  PubMed  CAS  Google Scholar 

  25. Tsubata S, Bowles KR, Vatta M, et al. Mutations in the human delta-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J Clin Invest. 2000;106:655–662.

    Article  PubMed  CAS  Google Scholar 

  26. Grady RM, Teng H, Nichol MC, et al. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell. 1997;90:729–738.

    Article  PubMed  CAS  Google Scholar 

  27. Megeney LA, Kablar B, Perry RL, et al. Severe cardiomyopathy in mice lacking dystrophin and MyoD. Proc Natl Acad Sci USA. 1999;96:220–225.

    Article  PubMed  CAS  Google Scholar 

  28. Durbeej M, Cohn RD, Hrstka RF, et al. Disruption of the beta-sarcoglycan gene reveals pathogenetic complexity of limb-girdle muscular dystrophy type 2E. Mol Cell. 2000;5:141–151.

    Article  PubMed  CAS  Google Scholar 

  29. Hack AA, Ly CT, Jiang F, et al. Gamma-sarcoglycan deficiency leads to muscle membrane defects and apoptosis independent of dystrophin. J Cell Biol. 1998;142:1279–1287.

    Article  PubMed  CAS  Google Scholar 

  30. Coral-Vazquez R, Cohn RD, Moore SA, et al. Disruption of the sarcoglycansarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy. Cell. 1999;98:465–474.

    Article  PubMed  CAS  Google Scholar 

  31. Ikeda Y, Martone M, Gu Y, et al. Altered sarcolemmal permeability and membrane proteins correlate with cardiac dysfunction in cardiomyopathic hamsters. Am J Physiol. 2000;278:H1362–11370.

    CAS  Google Scholar 

  32. Factor SM, Minase T, Cho S, et al. Microvascular spasm in the cardiomyopathic Syrian hamster: a preventable cause of focal myocardial necrosis. Circulation. 1982;66:342–354.

    Article  PubMed  CAS  Google Scholar 

  33. Milner DJ, Weitzer G, Tran D, et al. Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol. 1996;134:1255–1270.

    Article  PubMed  CAS  Google Scholar 

  34. Li D, Tapscoft T, Gonzalez O, et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation. 1999;100:461–464.

    Article  PubMed  CAS  Google Scholar 

  35. Arber S, Hunter JJ, Ross J, Jr., et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell. 1997;88:393–403.

    Article  PubMed  CAS  Google Scholar 

  36. Bonne G, Di Barletta MR, Varnous S, et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet. 1999;21:285–288.

    Article  PubMed  CAS  Google Scholar 

  37. Fatkin D, MacRae C, Sasaki T, et al. missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction system disease. N Eng J Med. 1999;341:1715–1724.

    Article  CAS  Google Scholar 

  38. Braunwald E, Bristow MR. Congestive heart failure: fifty years of progress. Circulation. 2000;102:IV 14–23.

    Article  Google Scholar 

  39. Hongo M, Ryoke T, Schoenfeld J, et al. Effect of growth hormone on cardiac dysfunction and gene expression in genetic murine dilated cardiomyopathy. Basic Res Cardiol. 2000:In press.

    Google Scholar 

  40. Rockman HA, Chien KR, Choi DJ, et al. Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Natl Acad Sci U S A. 1998;95:7000–7005.

    Article  PubMed  CAS  Google Scholar 

  41. Minamisawa S, Hoshijima M, Chu G, et al. Chronic phospholambansarcoplasmic reticulum calsium ATPase interaction is the critical calcium cycling defect in Dilated Cardiomyopathy. Cell. 1999;99:313–322.

    Article  PubMed  CAS  Google Scholar 

  42. Delling U, Sussman MA, Molkentin JD. Re-evaluating sarcoplasmic reticulum function in heart failure [letter]. Nat Med. 2000;6:942–943.

    Article  PubMed  CAS  Google Scholar 

  43. Rockman HA, Ross RS, Harris AN, et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy [published erratum appears in Proc Natl Acad Sci U S A 1991 Nov 1;88(21):9907]. Proc Natl Acad Sci US A. 1991;88:8277–8281.

    Article  PubMed  CAS  Google Scholar 

  44. Hirota H, Yoshida K, Kishimoto T, et al. Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc Nall Acad Sci US A. 1995;92:4862–4866.

    Article  CAS  Google Scholar 

  45. Yoshida K, Taga T, Saito M, et al. Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Nall Acad Sci USA. 1996;93:407–411.

    Article  CAS  Google Scholar 

  46. Hirota H, Chen J, Betz UA, et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell. 1999;97:189–198.

    Article  PubMed  CAS  Google Scholar 

  47. Kubota T, McTiernan CF, Frye CS, et al. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res. 1997;81:627–635.

    Article  PubMed  CAS  Google Scholar 

  48. Patten RD, Aronovitz MJ, Deras-Mejia L, et al. Ventricular remodeling in a mouse model of myocardial infarction. Am J Physiol. 1998;274:H1812–1820.

    PubMed  CAS  Google Scholar 

  49. Vaplon S, Zimmerman S, Covell J, et al. Altered post-MI Ventricular Remodeling in Decorin-Null Mice. Circulation. 2000;102:II-358.

    Google Scholar 

  50. Takeshima H, Komazaki S, Hirose K, et al. Embryonic lethality and abnormal cardiac myocytes in mice lacking ryanodine receptor type 2. Embo J. 1998;17:3309–3316.

    Article  PubMed  CAS  Google Scholar 

  51. Shou W, Aghdasi B, Armstrong DL, et al. Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature. 1998;391:489–492.

    Article  PubMed  CAS  Google Scholar 

  52. Marx SO, Reiken S, Hisamatsu Y, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell. 2000;101:365–376.

    Article  PubMed  CAS  Google Scholar 

  53. Takeshima H, Komazaki S, Nishi M, et al. Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell. 2000;6:11–22.

    PubMed  CAS  Google Scholar 

  54. Jones LR, Suzuki YJ, Wang W, et al. Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J Clin Invest. 1998;101:1385–1393.

    Article  PubMed  CAS  Google Scholar 

  55. Minamisawa S, Hoshijima M, Chu G, et al. Chronic phospholambansarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell. 1999;99:313–322.

    Article  PubMed  CAS  Google Scholar 

  56. Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93:215–228.

    Article  PubMed  CAS  Google Scholar 

  57. Sussman MA, Lim HW, Gude N, et al. Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science. 1998;281:1690–1693.

    Article  PubMed  CAS  Google Scholar 

  58. Passier R, Zeng H, Frey N, et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest. 2000;105:1395–1406.

    Article  PubMed  CAS  Google Scholar 

  59. D’Angelo DD, Sakata Y, Lorenz JN, et al. Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci U S A. 1997;94:8121–8126.

    Article  PubMed  Google Scholar 

  60. Adams JW, Sakata Y, Davis MG, et al. Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci US A. 1998;95:10140–10145.

    Article  PubMed  CAS  Google Scholar 

  61. Iwase M, Uechi M, Vatner DE, et al. Cardiomyopathy induced by cardiac Gs alpha overexpression. Am J Physiol. 1997;272:H585–589.

    CAS  Google Scholar 

  62. Lutz H, Lohse MJ. Hypertrophy and contractile dysfunction in transgenic mice with heart-specific overexpression of the 01-adrenergic receptor. Circulation 1999;100:I-762.

    Google Scholar 

  63. Fentzke RC, Korcarz CE, Lang RM, et al. Dilated cardiomyopathy in transgenic mice expressing a dominant-negative CREB transcription factor in the heart. J Clin Invest. 1998;101:2415–2426.

    Article  PubMed  CAS  Google Scholar 

  64. Thomas CV, Coker ML, Zenner JL, et al. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation. 1998;97:1708–1715.

    Article  PubMed  CAS  Google Scholar 

  65. DiMauro S, Hirano M. Mitochondria and heart disease. Curr Opin Cardiol. 1998;13:190–197.

    PubMed  CAS  Google Scholar 

  66. Wallace DC, Graham B. Mitochondrial Genes in Myopathy, Cardiomyopathy, and Stroke. In: Chien KR, ed. Molecular Basis of Cardiovascular Disease. Philadelphia: W.B.Saunders; 1999:264–277.

    Google Scholar 

  67. Graham BH, Waymire KG, Cottrell B, et al. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet. 1997;16:226–234.

    Article  PubMed  CAS  Google Scholar 

  68. Li Y, Huang TT, Carlson EJ, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1995;11:376–381.

    Article  PubMed  CAS  Google Scholar 

  69. Wang J, Wilhelmsson H, Graff C, et al. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet. 1999;21:133–137.

    Article  PubMed  CAS  Google Scholar 

  70. Kawai C. From myocarditis to cardiomyopathy: mechanisms of inflammation and cell death: learning from the past for the future. Circulation. 1999;99:1091–1100.

    Article  PubMed  CAS  Google Scholar 

  71. Wessely R, Klingel K, Santana LF, et al. Transgenic expression of replication-restricted enteroviral genomes in heart muscle induces defective excitation-contraction coupling and dilated cardiomyopathy. J Clin Invest. 1998;102:1444–1453.

    Article  PubMed  CAS  Google Scholar 

  72. Badorff C, Lee GH, Lamphear BJ, et al. Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med. 1999;5:320–326.

    Article  PubMed  CAS  Google Scholar 

  73. Lee GH, Badorff C, Knowlton KU. Dissociation of sarcoglycans and the dystrophin carboxyl terminus from the sarcolemma in enteroviral cardiomyopathy. Circ Res. 2000;87:489–495.

    Article  PubMed  CAS  Google Scholar 

  74. Bachmaier K, Neu N, Yeung RS, et al. Generation of humanized mice susceptible to peptide-induced inflammatory heart disease. Circulation. 1999;99:1885–1891.

    Article  PubMed  CAS  Google Scholar 

  75. Geisterfer-Lowrance AA, Christe M, Conner DA, et al. A mouse model of familial hypertrophic cardiomyopathy. Science. 1996;272:731–734.

    Article  PubMed  CAS  Google Scholar 

  76. Chen J, Kubalak SW, Minamisawa S, et al. Selective requirement of myosin light chain 2v in embryonic heart function. J Biol Chem. 1998;273:1252–1256.

    Article  PubMed  CAS  Google Scholar 

  77. Minamisawa S, Gu Y, Ross J, Jr., et al. A post-transcriptional compensatory pathway in heterozygous ventricular myosin light chain 2-deficient mice results in lack of gene dosage effect during normal cardiac growth or hypertrophy. J Biol Chem. 1999;274:10066–10070.

    Article  PubMed  CAS  Google Scholar 

  78. Oberst L, Zhao G, Park JT, et al. Dominant-negative effect of a mutant cardiac troponin T on cardiac structure and function in transgenic mice. J Clin Invest. 1998;102:1498–1505.

    Article  PubMed  CAS  Google Scholar 

  79. Tardiff JC, Factor SM, Tompkins BD, et al. A truncated cardiac troponin T molecule in transgenic mice suggests multiple cellular mechanisms for familial hypertrophic cardiomyopathy. J Clin Invest. 1998;101:2800–2811.

    Article  PubMed  CAS  Google Scholar 

  80. Tardiff JC, Hewett TE, Palmer BM, et al. Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest. 1999;104:469–481.

    Article  PubMed  CAS  Google Scholar 

  81. James J, Zhang Y, Osinska H, et al. Transgenic modeling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy. Circ Res. 2000;87:805–811.

    Article  PubMed  CAS  Google Scholar 

  82. Muthuchamy M, Pieples K, Rethinasamy P, et al. Mouse model of a familial hypertrophic cardiomyopathy mutation in alpha-tropomyosin manifests cardiac dysfunction. Circ Res. 1999;85:47–56.

    Article  PubMed  CAS  Google Scholar 

  83. Bing W, Knott A, Redwood C, et al. Effect of hypertrophic cardiomyopathy mutations in human cardiac muscle alpha -tropomyosin (Asp175Asn and Glu180Gly) on the regulatory properties of human cardiac troponin determined by in vitro motility assay. JMoI Cell Cardiol. 2000;32:1489–1498.

    Article  CAS  Google Scholar 

  84. Yang Q, Sanbe A, Osinska H, et al. A mouse model of myosin binding protein C human familial hypertrophic cardiomyopathy. J Clin Invest. 1998;102:1292–1300.

    Article  PubMed  CAS  Google Scholar 

  85. Cantlay AM, Shokrollahi K, Allen JT, et al. Genetic analysis of the G4.5 gene in families with suspected Barth syndrome. J Pediatr. 1999;135:311–315.

    Article  PubMed  CAS  Google Scholar 

  86. Goldfarb LG, Park KY, Cervenáková L, et al. Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nat Genet. 1998;19:402–403.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ikeda, Y., Ross, J. (2001). Models of Cardiac Disease in the Mouse. In: Hoit, B.D., Walsh, R.A. (eds) Cardiovascular Physiology in the Genetically Engineered Mouse. Developments in Cardiovascular Medicine, vol 238. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1653-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1653-8_21

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5661-5

  • Online ISBN: 978-1-4615-1653-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics