Skip to main content

Flip-Chip Die Attach Technology

  • Chapter
Area Array Interconnection Handbook

Abstract

Wire bonds, tape automated bonding (TAB), and solder-bump, flip-chip connections more popularly referred to as controlled collapsed chip connections or C4 are the three primary chip-to-carrier interconnection technologies currently practiced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Weston, Hybrid Circuits, vol. 8, p. 26, 1985.

    Google Scholar 

  2. O. L. Anderson, Bell Labs Rec., Nov. 1957.

    Google Scholar 

  3. E. M. Davis, W. E. Harding, R. S. Schwartz and J. J. Corning, “Solid Logic Technology: Versatile, High-Performance Microelectronics,” IBM J. Res. Develop. 8: pp. 102–114, Apr. 1964.

    Article  Google Scholar 

  4. L. S. Goldmann, R. J. Herdizk, N. G. Koopman and V. C. Marcotte, “Lead-Indium for Controlled Collapse Chip Joining,” IEEE Trans. Parts, Hybrids, Pack., vol. PHP-13: pp. 194–198, Sept. 1977.

    Article  Google Scholar 

  5. R. T. Howard, “Optimization of Indium-Lead Alloys for Controled Collapse Connection,” IBM J. Res. Develop., 26: pp. 372–389, May 1982.

    Article  Google Scholar 

  6. J. A. Perri, H. S. Lehman, W. A. Pliskin and J. Riseman, “Surface Protection of Silicon Devices with Glass Films,” presented at Electrochem. Soc. Mtg., Oct. 1961.

    Google Scholar 

  7. L. Goldmann and P. Totta, “Area Array Solder Interconnections for VLSI,” Solid State Technol., pp. 91–97, June 1983.

    Google Scholar 

  8. B. Agarwala, “Thermal Fatigue Damage in Pb-In Solder Interconnections,” Proc. 23rd Reliability Physics Conf, pp. 198–205, 1985.

    Google Scholar 

  9. L. R Miller, “Controlled Collapse Reflow Chip Joining,” IBM J. Res. Develop., 13: pp. 239–250, May 1969.

    Article  Google Scholar 

  10. P. A. Totta, “Flip Chip Solder Terminals,” Proc. 21st Elec. Components Conf, pp. 275–285,1971.

    Google Scholar 

  11. Peter J. Brofman, “Electronic Packaging,” 1995 McGraw-Hill Yearbook of Science & Technology, New York: p. 140, McGraw-Hill, Inc, 1994, p. 140.

    Google Scholar 

  12. A. Van der Drift et al., “Integrated Circuits with Leads on Flexible Tape,” Phillips Tech. Rev., 13: pp. 226–238,1969.

    Google Scholar 

  13. T. Kawanobe, K. Miyamoto and Y. Inaba, “Solder Fabrication by Electrochemical Method for Flip Chip Interconnection,” Proc. Electron. Components Conf. (Atlanta, GA), pp. 149–155, May 1981.

    Google Scholar 

  14. Peter Elenius, “Flex on Cap-Solder Paste Bumping,” Proc. Electronic Components and Technology Conference (San Jose, CA), pp. 248–253, May 1997.

    Google Scholar 

  15. C. Y. Liu, K. N. T. T. Sheng, C. H. Tung, D. R. Freer and P. Elenius, “Cross-Sectional Scanning and Transmission Electron Microscopy of Interfacial Reaction Between Eutectic SnPb and Cu/Ni(V)AL Thin Film Metallization,” J. of Applied Physics, 87: pp. 750–754, Jan. 2000.

    Article  Google Scholar 

  16. F. Stepniak, “Estimating Flip-Chip Reliability: Interactive Temperature-Dependant Failure Mechanisms Involving the Under Bump Metallurgy,” Proc. IMAPS Conf. (Chicago, IL), pp. 427–432, Oct. 1999.

    Google Scholar 

  17. Peter Elenius, Jim Leal, Joe Ney, Dave Stepniak and Shing Yeh, “Recent Advances in Flip Chip Wafer Bumping Using Solder Paste Technology,” Electronic Components and Technology Conference (San Diego, CA), pp. 260–265, June 1999.

    Google Scholar 

  18. Dow Chemical, Technical Notes for Advanced Electronic Resins, p. 1.

    Google Scholar 

  19. A. Blodgett and D. Barbour, “Thermal Conduction Module: A High Performance Multi-layer Ceramic Package,” IBM J. Res. Develop. 26(1): pp. 30–36, Jan. 1982.

    Article  Google Scholar 

  20. P. J. Brofman, S. K. Ray and K. F. Beckham, “Electrical Connections to the Thermal Conduction Moduls of the IBM Enterprise System/9000 Models 820 and 900 Processors,” IBM J. Res. Develop. 36(5): pp. 921–934, Sept. 1992.

    Article  Google Scholar 

  21. E. A. Erk, K. A. Lidestri, K. J. Puttlitz and H. Wenskus, “Micro-miniature Solder Flattening Assembly,” IBM Technical Disclosure Bulletin, pp. 279–280, May 1989.

    Google Scholar 

  22. C. F. Carey, K. M. Fallon, V. R. Markovich, D. O. Powell, G. P. Vlasak and R. S. Starr, “Process for Selective Application of Solder to Circuit Packages, U.S. Patent, No. 5,597, 469.

    Google Scholar 

  23. D. J. Hayes and W. R. Cox, “Micro-Printing of Polymers for Electronic Manufacturing,” Proceedings of 3rd International Conference on Adhesive Joining and Coating Technology in.Electronics Manufacturing, pp. 168–173, 1998.

    Google Scholar 

  24. Accel, 1825 East Plano Parkway, Plano TX 75074.

    Google Scholar 

  25. G. Arjavalingham et al., “Laser Ablative Cleaning of Bonding Surfaces,” IBM Technical Disclosure Bulletin, pp. 429–430, Sept. 1989.

    Google Scholar 

  26. Howard H. Manko, Solders and Soldering, New York: McGraw-Hill, 1979, 2nd edition, pp. 17–40.

    Google Scholar 

  27. Frederick G. Yost, E Michael Hosking and Darrel R. Frear, The Mechanics of Solder Alloy Wetting and Spreading, New York:Van Nostrand & Rheinhold 1993, pp. 35–102.

    Google Scholar 

  28. R. J. Klein Wassink, Soldering in Electronics, Ayr, Scotland: Electrochemical Publications, 1984, pp. 133–171.

    Google Scholar 

  29. M. Nasta and H. C. Peebles, “Model of the Solder Flux Reaction; Reactions at the Metal/Metal Oxide/Electrolyte Solution Interface,” Circuit World, 21(4), pp. 10–13, 1995.

    Article  Google Scholar 

  30. Dhaneshwar and N. C. Lee, “Post Reflow Solder Paste Residue: Sources, Properties, Chemistry and Concerns,” Proceedings NEPCON East (Boston, MA), p. 185, June 1996.

    Google Scholar 

  31. R. J. Klein Wassink, Soldering in Electronics, Ayr, Scotland: Electrochemical Publications, Ltd., 1984, p. 149.

    Google Scholar 

  32. M. L. Patterson and M. H. Hahn, “Characterization of Nitrogen-Blanketed Wave Soldering Reactions Using Thermal Analysis,” J. Thermal Analysis, 44: p. 1233,1995.

    Article  Google Scholar 

  33. N. Koopman, S. Nangalia and V. Rogers, “Fluxless No-Clean Assembly of Solder Bumped Flip Chips,” Proceedings,ECTC (Orlando, FL), pp. 552–558,1996.

    Google Scholar 

  34. R. L. Turner, “Water-Soluble Soldering Flux,” US Patent 5,452,840, IssueIDd 9/26/95.

    Google Scholar 

  35. W. Rubin, “The Development of Soldering Products whose Residues need not be Removed,” Proceedings ISHM (Minneapolis, MN), pp. 243–248, Sept. 1987.

    Google Scholar 

  36. V. K. Nagesh et al., “Challenges of Flip Chip on Organic Chip-carrier Assembly Technology,” Proceedings Electronic Components and Technology Conference, pp. 975–978, June 1999.

    Google Scholar 

  37. J. E Kuhmann et al., “Oxidation and Reduction of Liquid SnPb (60/40) Under Ambient and Vacuum Conditions,” J. Electrochem. Soc., 145(6): p. 2138,1998.

    Article  Google Scholar 

  38. P. J. Shiloh and V. Liedke, “Flux-free Soldering,” Proceedings NEPCON West (Anaheim, CA), vol. I, p. 251, Feb.-Mar. 1994.

    Google Scholar 

  39. Frederick G. Yost, F. Michael Hosking and Darrel R. Frear, The Mechanics of Solder Alloy Wetting and Spreading, New York: Van Nostrand & Rheinhold 1993, pp. 233–234.

    Google Scholar 

  40. T. D. Cabelka and W. L. Archer, “Cleaning—What Really Counts,” Proceedings ISHM (Anaheim, CA), pp. 520–528, Nov. 1985.

    Google Scholar 

  41. S. K. Tran, D. L. Questad and B. G. Sammakia, “Adhesion IssueIDs in Flip Chip on Organic Modules,” IEEE Trans. Compon. Packag. Technol.(USA) 22(4): pp. 519–524, Dec. 1999.

    Article  Google Scholar 

  42. S. Anderson and J. Carter, “A Semi-Aqueous Alternative to Freon TMS Cleaning,” Proceedings NEPCON East (Boston, MA), pp. 313–322, June 1991.

    Google Scholar 

  43. E. L. Swan et al., “Solvent Cleaning: HCFC Option,” Proceedings NEPCON East (Boston, MA), pp. 41–47, June 1991.

    Google Scholar 

  44. J. K. “Kirk” Bonner, “A Status Update on HCFC-141b-Based Solvents,” Proceedings NEPCON East (Boston, MA), pp. 3–13, June 1991.

    Google Scholar 

  45. A. Merchant, “An Ozone Freindly CFC-113 Alternative for the 1990s,” Proceedings NEPCON West (Anaheim, CA), vol. III, p. 2243, Feb.-Mar. 1994.

    Google Scholar 

  46. E Bruneel, “No-Clean, No Residue Technology,” Proceedings NEPCON West (Anaheim, CA), pp. 533–541, Feb. 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Karl J. Puttlitz Paul A. Totta

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brofman, P.J., Puttlitz, K.J., Stalter, K.A., Woychik, C. (2001). Flip-Chip Die Attach Technology. In: Puttlitz, K.J., Totta, P.A. (eds) Area Array Interconnection Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1389-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1389-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5529-8

  • Online ISBN: 978-1-4615-1389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics