Skip to main content

Abstract

A full understanding of the complex correlated motion of electrons in atoms remains one of the fundamental challenges in atomic physics. The motion of atomic electrons can be described in terms of density functions in either configuration or momentum space. Single electron spatial density or momentum density gives the probability of finding an electron in a given region of space or with a given momentum. For pairs of electrons the corresponding densities can be expressed in terms of center-of-mass (Ql2) and relative (q12) coordinates. The calculations of Smirnov, Levin, Neudatchin, and Pavlitchenkov suggest that the q12 density will vary dramatically with the extent of correlation in the motion of the two electrons. 1, 2 This has been confirmed in more recent calculations by Wang and Smith for the first row hydrides, 3 and by Banyard and Sanders for H2, 4 Banyard and Mobbs for LiH, 5 and Mobbs and Banyard for Be. 6 These calculations demonstrate that the relative pair momentum density is a sensitive measure of electron correlation, but, until the present, direct experimental measurements of the densities have proved elusive. In this communication we describe measurements of center-of-mass pair electron momentum densities for the 3s electrons in magnesium using an electron-impact double-ionization technique and report progress on an experiment to measure relative two-electron momentum densities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu. F. Smirnov, A. V. Pavlitchenkov, V. G. Levin, and V. G. Neudatchin, J. Phys. B, 11, 3587(1978).

    Article  ADS  Google Scholar 

  2. V. G. Levin, V. Neudatchin, A. V. Pavlitchenkov, and Y. F. Smirnov, J. Phys. B, 17, 1525(1984).

    Article  ADS  Google Scholar 

  3. J. Wang and V. H. Smith, Jr., J. Chem. Phys., 99, 9745–55 (1993).

    Article  ADS  Google Scholar 

  4. K. E. Banyard and J. Sanders, J. Chem. Phys., 99, 5281 (1993).

    Article  ADS  Google Scholar 

  5. K. E. Banyard and R. J. Mobbs, J. Chem. Phys., 88, 3788 (1988).

    Article  ADS  Google Scholar 

  6. R. J. Mobbs and K. E. Banyard, J. Chem. Phys., 78, 6106 (1983).

    Article  ADS  Google Scholar 

  7. T. A. Carlson and M. O. Krause, Phys. Rev., 140, 1057 (1965).

    Article  ADS  Google Scholar 

  8. A. Lahmam-Bennani, I. Taouil, A. Duguet, M. Lecas, L. Avaldi, and J. Berakdar, Phys. Rev. A, 59, 3548 (1999)

    Article  ADS  Google Scholar 

  9. I. Taouil, A. Lahmam-Bennani, A. Duguet, and L. Avaldi, Phys. Rev. Lett., 81, 4600 (1998)

    Article  ADS  Google Scholar 

  10. P. Lamy, B. Joulakian, A. Lahmam-Bennani, J. Phys. B: At Mol. Opt. Phys., 29, 2315 (1996)

    Article  ADS  Google Scholar 

  11. M. J. Ford, J. P. Doering, M. A. Coplan, J. W. Cooper, and J. H. Moore, Phys. Rev. A, 51, 418(1995).

    Article  ADS  Google Scholar 

  12. A. Lahmam-Bennani, H. Ehrhardt, C. Dupre, and A. Duguet, J. Phys. B, 24, 3645 (1991).

    Article  ADS  Google Scholar 

  13. A. Dorn, R. Moshammer, C. D. Schröter, T. J. M. Zouros, W. Schmitt, H. Kollmus, R. Mann, and J. Ulrich, Phys Rev. Lett., 82, 2496–2500 (1999).

    Article  ADS  Google Scholar 

  14. M. J. Ford, J. H. Moore, M. A. Coplan, J. W. Cooper, and J. P. Doering, Phys. Rev. Lett., 11, 2650(1996).

    Article  ADS  Google Scholar 

  15. M. J. Ford, B. El Marji, J. P. Doering, J. H. Moore, M. A. Coplan, and J. W. Cooper, Phys. Rev. A 57, 325(1998).

    Article  ADS  Google Scholar 

  16. M. J. Ford, J. P. Doering, J. H. Moore, and M. A. Coplan, Rev. Sci. Instr., 66, 3137 (1995).

    Article  ADS  Google Scholar 

  17. B. El Marji, J. P. Doering, M. A. Coplan, J. W. Cooper, and J. H. Moore, DAMOP98, Santa Fe, 27–30 May 1998.

    Google Scholar 

  18. H. K. Ehrhardt, Jung, G. Knoth, and P. Schlemmer, Z. Phys. D, 1, 3–32 (1986).

    Article  ADS  Google Scholar 

  19. J. W. Cooper, private communication.

    Google Scholar 

  20. B. El Marji, J. P. Doering, M. A. Coplan, and J. H. Moore, Phys. Rev. Lett., 83, 1574 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moore, J.H., Coplan, M.A., Doering, J.P. (2001). Electron-Impact Double Ionization to Investigate Electron Correlation. In: Berakdar, J., Kirschner, J. (eds) Many-Particle Spectroscopy of Atoms, Molecules, Clusters, and Surfaces. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1311-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1311-7_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5491-8

  • Online ISBN: 978-1-4615-1311-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics