Advertisement

Electron-Impact Double Ionization to Investigate Electron Correlation

  • John H. Moore
  • Michael A. Coplan
  • John P. Doering

Abstract

A full understanding of the complex correlated motion of electrons in atoms remains one of the fundamental challenges in atomic physics. The motion of atomic electrons can be described in terms of density functions in either configuration or momentum space. Single electron spatial density or momentum density gives the probability of finding an electron in a given region of space or with a given momentum. For pairs of electrons the corresponding densities can be expressed in terms of center-of-mass (Ql2) and relative (q12) coordinates. The calculations of Smirnov, Levin, Neudatchin, and Pavlitchenkov suggest that the q12 density will vary dramatically with the extent of correlation in the motion of the two electrons. 1, 2 This has been confirmed in more recent calculations by Wang and Smith for the first row hydrides, 3 and by Banyard and Sanders for H2, 4 Banyard and Mobbs for LiH, 5 and Mobbs and Banyard for Be. 6 These calculations demonstrate that the relative pair momentum density is a sensitive measure of electron correlation, but, until the present, direct experimental measurements of the densities have proved elusive. In this communication we describe measurements of center-of-mass pair electron momentum densities for the 3s electrons in magnesium using an electron-impact double-ionization technique and report progress on an experiment to measure relative two-electron momentum densities.

Keywords

Momentum Transfer Electron Correlation Incident Electron Momentum Density Atomic Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. F. Smirnov, A. V. Pavlitchenkov, V. G. Levin, and V. G. Neudatchin, J. Phys. B, 11, 3587(1978).ADSCrossRefGoogle Scholar
  2. 2.
    V. G. Levin, V. Neudatchin, A. V. Pavlitchenkov, and Y. F. Smirnov, J. Phys. B, 17, 1525(1984).ADSCrossRefGoogle Scholar
  3. 3.
    J. Wang and V. H. Smith, Jr., J. Chem. Phys., 99, 9745–55 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    K. E. Banyard and J. Sanders, J. Chem. Phys., 99, 5281 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    K. E. Banyard and R. J. Mobbs, J. Chem. Phys., 88, 3788 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    R. J. Mobbs and K. E. Banyard, J. Chem. Phys., 78, 6106 (1983).ADSCrossRefGoogle Scholar
  7. 7.
    T. A. Carlson and M. O. Krause, Phys. Rev., 140, 1057 (1965).ADSCrossRefGoogle Scholar
  8. 8.
    A. Lahmam-Bennani, I. Taouil, A. Duguet, M. Lecas, L. Avaldi, and J. Berakdar, Phys. Rev. A, 59, 3548 (1999)ADSCrossRefGoogle Scholar
  9. I. Taouil, A. Lahmam-Bennani, A. Duguet, and L. Avaldi, Phys. Rev. Lett., 81, 4600 (1998)ADSCrossRefGoogle Scholar
  10. P. Lamy, B. Joulakian, A. Lahmam-Bennani, J. Phys. B: At Mol. Opt. Phys., 29, 2315 (1996)ADSCrossRefGoogle Scholar
  11. 9.
    M. J. Ford, J. P. Doering, M. A. Coplan, J. W. Cooper, and J. H. Moore, Phys. Rev. A, 51, 418(1995).ADSCrossRefGoogle Scholar
  12. 10.
    A. Lahmam-Bennani, H. Ehrhardt, C. Dupre, and A. Duguet, J. Phys. B, 24, 3645 (1991).ADSCrossRefGoogle Scholar
  13. 11.
    A. Dorn, R. Moshammer, C. D. Schröter, T. J. M. Zouros, W. Schmitt, H. Kollmus, R. Mann, and J. Ulrich, Phys Rev. Lett., 82, 2496–2500 (1999).ADSCrossRefGoogle Scholar
  14. 12.
    M. J. Ford, J. H. Moore, M. A. Coplan, J. W. Cooper, and J. P. Doering, Phys. Rev. Lett., 11, 2650(1996).ADSCrossRefGoogle Scholar
  15. 13.
    M. J. Ford, B. El Marji, J. P. Doering, J. H. Moore, M. A. Coplan, and J. W. Cooper, Phys. Rev. A 57, 325(1998).ADSCrossRefGoogle Scholar
  16. 14.
    M. J. Ford, J. P. Doering, J. H. Moore, and M. A. Coplan, Rev. Sci. Instr., 66, 3137 (1995).ADSCrossRefGoogle Scholar
  17. 15.
    B. El Marji, J. P. Doering, M. A. Coplan, J. W. Cooper, and J. H. Moore, DAMOP98, Santa Fe, 27–30 May 1998.Google Scholar
  18. 16.
    H. K. Ehrhardt, Jung, G. Knoth, and P. Schlemmer, Z. Phys. D, 1, 3–32 (1986).ADSCrossRefGoogle Scholar
  19. 17.
    J. W. Cooper, private communication.Google Scholar
  20. 18.
    B. El Marji, J. P. Doering, M. A. Coplan, and J. H. Moore, Phys. Rev. Lett., 83, 1574 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • John H. Moore
    • 1
  • Michael A. Coplan
    • 2
  • John P. Doering
    • 3
  1. 1.Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkUSA
  2. 2.Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA
  3. 3.Department of ChemistryJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations