Skip to main content

Design and Use of Antibodies for Mapping K+Channel Expression in the Cardiovascular System

  • Chapter
Potassium Channels in Cardiovascular Biology

Abstract

K+ channels represent a large and diverse group of ion channels that play a fundamental role in controlling cell excitability. These channels regulate hormone release from endocrine cells, modulate the pattern of transmitter release from neurons, and set the level of contraction in arterial smooth muscle cells. At first glance, K+ channels can be subdivided into either voltage-gated K+ (Kv) channels or ligand-gated K+ channels, depending on the stimulus that triggers the conformational change that leads to channel opening. Within the wide family of K+ channels gated by voltage, the Kv channels are activated solely by membrane depolarization, whereas high-conductance Ca2+-activated K+ (BKCa) channels require both membrane depolarization and an increased level of cytosolic free Ca2+ ([Ca2+]i) to activate effectively. The use of molecular biology techniques has greatly extended our current understanding regarding the structure and existence of subfamilies of K+ channels. However, three major questions still are the subject of extensive investigation: (1) What is the molecular composition of the different types of K+ channels expressed in vivo, (2) what is the physiological function of these K+ channels, and (3) is the molecular composition and functional profile of K+ channels altered in pathophysiological states?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berger, M. G., Rusch, N. J. 1999, Voltage and calcium-gated potassium channels: Functional expression and therapeutic potential in the vasculature, In: Perspectives in Drug Discovery and Design, Y. C. Martin (series ed.), vol. 15/16 Kluwer Academic Plenum Publishers, Dordrecht, The Netherlands, pp. 313–332.

    Google Scholar 

  • Crest, M., Jacquet, G., Gola, M., Zerrouk, H., Benslimane, A., Rochat, H., Mansuelle P., and Martin- Eauclaire, M. F., 1992, Kaliotoxin, a novel peptidyl inhibitor of neuronal BK-type Ca2+-activated K+ channels characterized from Androctonus mauretanicus mauretanicus venom, J. Biol. Chem. 267:1640– 1647.

    PubMed  CAS  Google Scholar 

  • Darbon H., Blanc, E. and Sabatier, J.-M., 1999, Three-dimensional structure of scorpion toyins: Towards a new model of interaction with potassium channels, In: Perspectives in Drug Discovery and Design (Y. C. Martin, Series ed.), Vol. 15/16, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 41–60.

    Google Scholar 

  • Galvez, A., Gimenez-Gallego, G., Reuben, J. P., Roy-Contancin, L., Feigenbaum, P., Kaczorowski, G. J., and Garcia, M. L., 1990, Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus, J. Biol. Chem. 265:11083–11090.

    PubMed  CAS  Google Scholar 

  • Garcia, M. L., Garcia-Calvo, M., Hidalgo, P., Lee, A., and MacKinnon, R., 1994, Purification and characterization of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var. hebraeus venom, Biochemistry 33:6834–6839.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Calvo, M., Leonard, R. J., Novick, J., Stevens, S. P., Schmalhofer, W., Kaczorowski, G. J., and Garcia, M. L., 1993, Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels, J. Biol. Chem. 268:18866–18874.

    PubMed  CAS  Google Scholar 

  • Knaus, H. -G., Eberhart, A., Koch, R. O. A., Munujos, P., Schmalhofer, W. A., Warmke, J. W., Kaczorowski, G. J., and Garcia, M. L., 1995, Characterization of tissue-expressed α subunits of the high conductance Ca2+activated K+ channel, J. Biol Chem.270:22434–22439.

    Article  PubMed  CAS  Google Scholar 

  • Koch, R. O., Wanner, S. G., Koschak, A., Hanner, M., Schwarzer, C., Kaczorowski, G. J., Slaughter, R. S., Garcia, M. L., and Knaus, H. G., 1997, Complex subunit assembly of neuronal voltage-gated K+ channels: Basis for high-affinity toxin interactions and pharmacology, J. Biol. Chem. 272:27577–27581.

    Article  PubMed  CAS  Google Scholar 

  • Koschak, A., Bugianesi, R. M., Mitterdorfer, J., Kaczorowski, G. J., Garcia, M. L. and Knaus, H. G., 1998, Subunit composition of brain voltage-gated potassium channels determined by hongotoxin-1, a novel peptide derived from Centruroides limbatus venom, J. Biol. Chem. 273:2639–2644.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Pleyte, K. A., Knaus, H.-G., and Rusch, N. J., 1997, Increased expression of Ca2+sensitive K+ channels in aorta of hypertensive rats, Hypertension 30:1403–1409.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Hudetz, A. G., Knaus, H.-G., and Rusch, N. J., 1998, Increased expression of Ca2+sensitive K+ channels in the cerebral microcirculation of genetically hypertensive rats: Evidence for protection against cerebral vasospasm, Circ. Res. 82:729–737.

    Article  PubMed  CAS  Google Scholar 

  • McCobb, D. P., Fowler, N. L., Featherstone, T., Lingle, C. J., Saito, M., Krause, J. E., and Salkoff, L., 1995, A human calcium-activated potassium channel gene expressed in vascular smooth muscle,Am. J. Physiol. 269:H767–H777.

    PubMed  CAS  Google Scholar 

  • Overturf, K. E., Russell, S. N., Carl, A., Vogalis, F., Hart, P. J., Hume, J. R., Sanders, K. M., and Horowitz, B., 1994, Cloning and characterization of a Kvl.5 delayed rectifier K+ channel from vascular and visceral smooth muscles, Am. J. Physiol. 267:C1231–C1238.

    PubMed  CAS  Google Scholar 

  • Parcej, D. N., and Dolly, J. O., 1989, Dendrotoxin acceptor from bovine synaptic plasma membranes: Binding properties, purification and subunit composition of a putative constituent of certain voltage-activated K+ channels [see comments], Biochem. J. 257:899–903.

    PubMed  CAS  Google Scholar 

  • Rehm, H., and Lazdunski, M., 1988, Purification and subunit structure of a putative K+-channel protein identified by its binding properties for dendrotoxin I, Proc. Natl. Acad. Sci. U.S.A. 85:4919–4923.

    Article  PubMed  CAS  Google Scholar 

  • Roberds, S. L., and Tamkun, M. M., 1991, Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in the rat heart,Proc. Natl. Acad. Sci. U.S.A. 88:1798–1802.

    Article  PubMed  CAS  Google Scholar 

  • Roeper, J., Sewing, S., Zhang, Y., Sommer, T., Wanner, S. G., and Pongs, O., 1998, NIP domain prevents N-type inactivation in voltage-gated potassium channels, Nature 391:390–393.

    Article  PubMed  CAS  Google Scholar 

  • Shamotienko, O. G., Parcej, D. N., and Dolly, J. O.,1997, Subunit combinations defined for K+ channel Kv1 subtypes in synaptic membranes from bovine brain, Biochemistry 36:8195–8201.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, M., Liao, Y. J., Jan, Y. N., and Jan, L. Y., 1993, Presynaptic A-current based on heteromultimeric K+ channels detected in vivo, Nature 365:72–75.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, M., Tsaur, M. L., Jan, Y. N., and Jan, L. Y., 1994, Contrasting subcellular localization of the Kv1.2 K+ channel subunit in different neurons of rat brain, J. Neurosci. 14:2408–2417.

    PubMed  CAS  Google Scholar 

  • Stuhmer, W., Ruppersberg, J. P., Shroter, K. H., Sakmann, B., Stocker, M., Giese, K. P., Perschke, A., Baumann, A., and Pongs, O., 1989, Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain, EMBO J. 8:3235–3244.

    PubMed  CAS  Google Scholar 

  • Vazquez, J., Feigenbaum, P., Katz, G., King, V. F., Reuben, J. P., Roy-Contancin, L., Slaughter, R. S., Kaczorowski, G. J., and Garcia, M. L., 1989, Characterization of high affinity binding sites for charybdotoxin in sarcolemmal membranes from bovine aortic smooth muscle: Evidence for a direct association with the high conductance calcium-activated potassium channel, J. Biol. Chem. 64:20902– 20909.

    Google Scholar 

  • Vazquez, J., Feigenbaum, P., King, V. F., Kaczorowski, G. J., and Garcia, M. L., 1990, Characterization of high affinity binding sites for charybdotoxin in synaptic plasma membranes from rat brain: Evidence for a direct association with an inactivating, voltage-dependent, potassium channel, J. Biol. Chem. 265:15564–15571.

    PubMed  CAS  Google Scholar 

  • Veh, R. W., Lichtinghagen, R., Sewing, S., Wunder, F., Grumbach, I. M., and Pongs, O., 1995, Immunohistochemical localization of five members of the Kv1 channel subunits: Contrasting subcellular locations and neuron-specific co-localizations in rat brain,Eur. J. Neurosci. 7:2189–2205.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Kunkel, D. D., Schwartzkroin, P. A., and Tempel, B. L, 1994, Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain, J. Neurosci. 14:4588–4599.

    PubMed  CAS  Google Scholar 

  • Wang, J., Juhaszova, J., Rubin, L. J., and Yuan, X,-J., 1997, Hypoxia inhibits gene expression of voltage-gated K+ channels α-subunits in pulmonary artery smooth muscle cells, J. Clin. Invest. 100:2347–2353.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koch, R.O. et al. (2001). Design and Use of Antibodies for Mapping K+Channel Expression in the Cardiovascular System. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics