Skip to main content

Endothelial Cell K+ Channels, Membrane Potential and the Release of Vasoactive Factors from the Vascular Endothelium

  • Chapter
Potassium Channels in Cardiovascular Biology

Abstract

Potassium channels play an important role in the regulation of the membrane potential (E m ) of endothelial cells and thereby modulate the entry of extracellular Ca2+ (Adams, 1994; Himmel et al., 1993; Adams et al., 1989). Ca2+ entry in concert with intracellular Ca2+ release is important for the synthesis of a number of endothelium-derived vasoactive factors. Thus, the synthesis of the endothelium-derived relaxing factor (EDRF), nitric oxide (NO), and of prostacyclin (PGI2) requires, respectively, the Ca2+-calmodulin-dependent activation of the constitutive endothelial cell nitric oxide synthase (eNOS) and the Ca2+ -dependent activation of phospholipase A2 (Pollock et al., 1991; Bredt and Snyder, 1990; Carter et al., 1988; Hallam et al., 1988). Similarly, the synthesis of the vasoconstrictor peptide endothelin-1 (ET-1) requires the mobilization of intracellular Ca2+ and the activation of protein kinase C (Yanagisawa et al., 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. J., 1994, Ionic channels in vascular endothelial cells, Trends Cardiovasc. Med. 4:18–26.

    Article  PubMed  CAS  Google Scholar 

  • Adams, D. J., Barakeh, J., Laskey, R., and van Breemen, C., 1989, Ion channels and regulation of intracellular calcium in vascular endothelial cells, FASEB J. 3:2389–2400.

    PubMed  CAS  Google Scholar 

  • Adeagbo, A. S. O., and Triggle, C. R., 1991, Effects of some inorganic divalent cations and protein kinase C inhibitors on endothelium-dependent vasorelaxation in rat isolated aorta and mesenteric arteries, J. Cardiovasc. Pharmacol. 18:511–521.

    Article  PubMed  CAS  Google Scholar 

  • Adeagbo, A. S., Triggle, C. R., 1993, Varying extracellular [K+]: a functional approach to separating EDHF-and EDNA-related mechanisms in perfused rat mesenteric arterial bed, J. Cardiovasc. Pharmacol. 21(3): 423–429.

    Article  PubMed  CAS  Google Scholar 

  • Ayajiki, K., Kindermann, M., Hecker, M., Fleming, I., and Busse, R., 1996, Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells, Circ. Res. 78:750–758.

    Article  PubMed  CAS  Google Scholar 

  • Bauersachs, J., Popp, R., Hecker, M., Sauer, E., Fleming, I., and Busse, R., 1996, Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor, Circulation 94:3341–3346.

    Article  PubMed  CAS  Google Scholar 

  • Beny, J. L., and Pacicca, C., 1994, Bidirectional electrical communication between smooth muscle and endothelial cells in the pig coronary artery, Am. J. Physiol. 260:H1454–1472.

    Google Scholar 

  • Bkaily, G., D’Orléans-Juste, P., Naik, R., Perodin, J., Stankova, J., Abdulnour, E., and Rola-Pleszczynski, M., 1993, PAI activation of a voltage-gated R-type Ca2+ channels in human and canine aortic endothelial cells, Br. J. Pharmacol. 110:519–520.

    Article  PubMed  CAS  Google Scholar 

  • Bolotina, V. M., Najibi, S., Palacino, J. J., Pagano, P. J., and Cohen, R. A., 1994, Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscles, Nature 368:850–853.

    Article  PubMed  CAS  Google Scholar 

  • Brayden, J. E., 1990, Membrane hyperpolarization is a mechanism of endothelium-dependent cerebral vasodilation, Am. J. Physiol. 259:H668–H673.

    PubMed  CAS  Google Scholar 

  • Bredt, D. S., and Snyder, S. H., 1990, Isolation of nitric oxide synthase, a calmodulin-requiring enzyme, Proc. Natl. Acad. Sci. U.S.A. 87:682–685.

    Article  PubMed  CAS  Google Scholar 

  • Bregestovski, P., Bakhramov, A., Danilov, S., Moldobaeva, A., and Takeda, K., 1988, Histamine-induced inward currents in cultured endothelial cells from human umbilical vein, Br. J. Pharmacol. 95:429–436.

    Article  PubMed  CAS  Google Scholar 

  • Busse, R., and Fleming, I., 1998, Pulsatile stretch and shear stress: Physical stimuli determining the production of endothelium-derived relaxing factors, J. Vasc. Res. 35:73–84.

    Article  PubMed  CAS  Google Scholar 

  • Busse, R., Eichtner, H., Lucknoff, A., and Kohlhardt, M., 1988, Hyperpolarization and increased free calcium in acetylcholine-stimulated endothelial cells, Am. J. Physiol. 255:H965-H969.

    PubMed  CAS  Google Scholar 

  • Cai, S., Garneau, L., and Sauve, R., 1998, Single-channel characterization of the pharmacological properties of the K (Ca2+) channel of intermediate conductance in bovine aortic endothelial cells, J. Membr. Biol. 163:147–158.

    Article  PubMed  CAS  Google Scholar 

  • Carter, T. D., Hallam, T. J., Cussack, N. J., and Pearson, J. D., 1988, Regulation of P2Y-purinoceptor-mediated prostacyclin release from human endothelial cells by cytoplasmic calcium concentration, Br. J. Pharmacol. 95:429–436.

    Article  Google Scholar 

  • Chataigneau, T., Feletou, M., Duhault, J., and Vanhoutte, P. M., 1998a, Epoxyeicosatrienoic acids, potassium channel blockers and endothelium-dependent hyperpolarization in the guinea pig carotid artery, Br. J. Pharmacol. 123:574–580.

    Article  PubMed  CAS  Google Scholar 

  • Chataigneau, T., Feletou, M., Thollon, C., Villeneuve, N., Vilaine, J-P., Duhault, J., and Vanhoutte, P. M., 1998b, Cannabinoid CB1 receptor and endothelium-dependent hyperpolarization in guinea-pig carotid, rat mesenteric and porcine coronary arteries, Br. J. Pharmacol. 123:968–974.

    Article  PubMed  CAS  Google Scholar 

  • Chataigneau, T., Feletou, M., Huang, P. L., Fishman, M. C., Duhault, J., and Vanhoutte, P. M., 1999, Acetylcholine-induced relaxation in blood vessels from endothelial nitric oxide synthase knockout mice, Br. J. Pharmacol. 126:219–226.

    Article  PubMed  CAS  Google Scholar 

  • Chaytor, A. T., Evans, W. H., and Griffith, T. M., 1998, Central role of heterocellular gap junctional communication in endothelium-dependent relaxation of rabbit arteries, J. Physiol. (London) 508:561–573.

    Article  CAS  Google Scholar 

  • Chen, G., and Cheung, D. W., 1992, Characterization of acetylcholine-induced membrane hyperpolarization in endothelial cells, Circ. Res. 70:257–263.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G. and Suzuki, H., 1990, Calcium-dependency of the endothelium-dependent hyperpolarization in smooth muscle cells of the rabbit carotid artery, J. Physiol. (London) 421:521–534.

    CAS  Google Scholar 

  • Cheung, D. W., Chen G., MacKay, M. J., and Burnette, E., 1999, Regulation of vascular tone by endothelium-derived hyperpolarizing factor, Clin. Exp. Pharmacol. Physiol. 26:172–175.

    Article  PubMed  CAS  Google Scholar 

  • Cook, N. S., and Quast, U., 1990, Potassium channel pharmacology in: Potassium Channels: Structure, Classification, Function and Therapeutic Potential (N. S. Cook, ed.), Halstead Press, New York, pp. 181–255.

    Google Scholar 

  • Daut, J., Mehrke, G., Nees, S., and Newman, W. H., 1987, Passive electrical properties and electrogenic sodium transport of cultured guinea-pig coronary endothelial cells, J. Physiol. (London) 402:237–254.

    Google Scholar 

  • Daut, J., Standen, N. B., and Nelson, M. T., 1994, The role of the membrane potential of endothelial and smooth muscle cells in the regulation of coronary blood flow, J. Cardiovasc. Electrophysiol. 5:154–181.

    Article  PubMed  CAS  Google Scholar 

  • Davies, P. F., 1995, Flow-mediated signal transduction in endothelial cells In: Flow Dependent Regulation of Vascular Function (J. A. Bevan, G. Kaley, and G. M. Rubanyi eds.), Oxford University Press, New York, pp. 46–61.

    Google Scholar 

  • Demirel, E., Rusko, J., Laskey, R. E., Adams, D. J., and Van Breemen, C., 1994, TEA inhibits Ach-induced EDRF release: Endothelial Ca2+-dependent K+ channels contribute to vascular tone, Am. J. Physiol. 267:H1135-H1141.

    PubMed  CAS  Google Scholar 

  • Dong, H., Waldron, G. J., Galipeau, D., Cole, W. C., and Triggle, C. R., 1997, NO/PGI2-independent vasorelaxation and the cytochrome P-450 pathway in rabbit carotid artery, Br. J. Pharmacol. 120:695– 701.

    Article  PubMed  CAS  Google Scholar 

  • Dong, H., Waldron, G. J., Cole, W. C., and Triggle, C. R., 1998, Roles of calcium-activated and voltage-gated rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery, Br. J. Pharmacol. 123:821–832.

    Article  PubMed  CAS  Google Scholar 

  • Doughty, J. M., Plane, F., and Langton, P. D., 1999, Charybdotoxin and apamin block EDHF in rat mesenteric artery if selectively applied to the endothelium, Am. J. Physiol. 276:H1107–H1112.

    PubMed  CAS  Google Scholar 

  • Edwards, F. R., and Hirst, G. D. S., 1988, Inward rectification in sub-mucosal arterioles of guinea-pig ileum, J. Physiol. (London) 404:437–454.

    CAS  Google Scholar 

  • Edwards, F. R., Hirst, G. D. S., and Silverberg, G. D., 1988, Inward rectification of rat cerebral arterioles: Involvement of potassium ions in autoregulation, J. Physiol. (London) 404:455–566.

    CAS  Google Scholar 

  • Edwards, G., Dora, K. A, Gardener, M. J., Garland, C. J., and Weston, A. H., 1998, K+ is an endothelium-derived hyperpolarizing factor in rat arteries, Nature 296:269–272.

    Google Scholar 

  • Faraci, F. M. and Heistad, D. D., 1998, Regulation of the cerebral circulation: Role of endothelium and potassium channels, Physiol. Rev. 78:53–97.

    PubMed  CAS  Google Scholar 

  • Félétou, M., and Vanhoutte, P. M., 1988, Endothelium-dependent hyperpolarization of canine coronary smooth muscle, Br. J. Pharmacol. 93:515–524.

    Article  PubMed  Google Scholar 

  • Fransen, P., Katnik, C., and Adams, D. J., 1998, ACh- and caffeine-induced Ca2+ mobilization and current activation in rabbit arterial endothelial cells, Am. J. Physiol. 275:H1748–H1758.

    PubMed  CAS  Google Scholar 

  • Fukao, M., Hattori, Y., Kanno, M., Sakuma, I., and Kitabatake, A., 1997, Sources of Ca2+ in relation to generation of acetylcholine-induced endothelium-dependent hyperpolarization in rat mesenteric artery, Br. J. Pharmacol 120:1328–1334.

    Article  PubMed  CAS  Google Scholar 

  • Fulton, D., McGiff, J. C., and Quilley, J., 1994, Role of K+ channels in the vasodilator response to bradykinin in the rat heart, Br. J. Pharmacol 113:954–958.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott, R. F., and Zawadski, J. V., 1980, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature 288:373–375.

    Article  PubMed  CAS  Google Scholar 

  • Galvez, A., Gimenez-Gallego, G., Reuben, J. P., Roy-Contancin, L. Feigenbaum, P., Kaczorowski, G. J., and Garcia, M. L., 1990, Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from the venom of the scorpion Buthus tamulus, J. Biol Chem. 265:11083–11090.

    PubMed  CAS  Google Scholar 

  • Garland, C. J., Plane, F., Kemp, B. J. K., and Cocks, T. K., 1996, Endothelium-dependent hyperpolarization: A role in the control of vascular tone, Trends Pharmacol. Sci. 16:23–30.

    Article  Google Scholar 

  • Gravier, W. F., Simecek, S., and Sturek, M., 1995, Cytochrome P450 mono-oxygenase-regulated signalling of endothelial Ca2+ entry, J. Physiol. (London) 483:259–274.

    Google Scholar 

  • Groschner, K., Gravier, W. F., and Kuskovetz, W.R., 1992, Activation of a small conductance Ca2+- dependent K+ channel contributes to bradykinin-induced stimulation of nitric oxide synthesis in pig aortic endothelial cells, Biochim. Biophys. Acta 1137:162–170.

    Article  PubMed  CAS  Google Scholar 

  • Hallam, T. J., Pearson, J. D., and Needham, L., 1988, Thrombin-stimulated elevation of endothelial cell cytoplasmic-free calcium concentration causes prostacyclin-production, Biochem. J. 257:243–249.

    Google Scholar 

  • Hammarström, A. K. M., Parkington, H. C., Tare, M., and Coleman, H. A., 1999, Endothelium-dependent hyperpolarization in resting and depolarized mammary and coronary arteries of guinea pigs, Br. J. Pharmacol 126:421–428.

    Article  PubMed  Google Scholar 

  • Harach, H. R., Jasani, B., and Williams, E. D., 1983, Factor VIII as a marker of endothelial cells in follicular carcinoma of the thyroid, J. Clin. Pathol. 36:1050–1054.

    Article  PubMed  CAS  Google Scholar 

  • Harris, D., Kendall, D. A., and Randall, M. D., 1999, Characterization of cannabinoid receptors coupled to vasorelaxation by endothelium-derived hyperpolarizing factor, Naunyn-Schmiedeberg’s Arch. Pharmacol. 359:48–52.

    Article  CAS  Google Scholar 

  • Hashitani, H., and Suzuki, H., 1997, K+ channels which contribute to the acetylcholine-induced hyperpolarization in smooth muscle of the guinea-pig submucosal arteriole, J. Physiol. (London) 501:319–329.

    Article  CAS  Google Scholar 

  • Hecker, M., Bara, A. T., Bauersachs, J., and Busse, R., 1994, Characterization of endothelium-derived hyperpolarizing factor as a cytochrome P-450-derived arachidonic acid metabolite in mammals, J. Physiol (London) 481:407–414.

    CAS  Google Scholar 

  • Himmel, H. M., Whorton, A. R., and Strauss, H. C., 1993, Intracellular calcium, currents, and stimulus-response coupling in endothelial cells, Hypertension 21:112–127.

    Article  PubMed  CAS  Google Scholar 

  • Hoebel, B. G., Kostner, G. M., and Gravier, W. F., 1997, Activation of microsomal cytochrome P450 mono-oxygenase by Ca2+-store depletion and its contribution to Ca2+ entry in porcine aortic endothelial cells, Br. J. Pharmacol. 121:1579–1588.

    Article  PubMed  CAS  Google Scholar 

  • Hosoki, E., and Iijima, T., 1994, Chloride-sensitive Ca2+ entry by histamine and ATP in human aortic endothelial cells, Eur. J. Pharmacol. 266:213–218.

    Article  PubMed  CAS  Google Scholar 

  • Hutcheson, I. R., and Griffith, T. M., 1994, Heterogenous population of K+ channels mediate EDRF release to flow but not agonists in rabbit aorta,Am. J. Physiol. 266:H590–H596.

    PubMed  CAS  Google Scholar 

  • Hutcheson, I. R., and Griffith, T. M., 1996, Mechanotransductions through the endothelial cytoskeleton: Mediation of flow but not agonist-induced EDRF release, Br. J. Pharmacol. 118:720–726.

    Article  PubMed  CAS  Google Scholar 

  • Hutcheson, I. R., Chaytor, A. T., Evans, W. H., and Griffith, T. M., 1999, Nitric oxide-independent relaxations to acetylcholine and A23187 involve different routes of heterocellular communication. Role of gap junctions and phospholipase A2, Circ. Res. 84:53–63.

    Article  PubMed  CAS  Google Scholar 

  • Hwa, J. J., Ghibaudi, L., Williams, P., and Chatterjee, M., 1994, Comparison of acetylcholine-dependent relaxation in large and small arteries of rat mesenteric vascular bed, Am. J. Physiol. 266:H952–H958.

    PubMed  CAS  Google Scholar 

  • Illiano, S., Nagao, T., and Vanhoutte, P. M., 1992, Calmidazolium, a calmodulin inhibitor, inhibits endothelium-dependent relaxations resistant to nitro-L-arginine in the canine coronary artery, Br. J. Pharmacol. 107:387–392.

    Article  PubMed  CAS  Google Scholar 

  • Janigro, D., West, G. A., Gordon, E. L., and Winn, H. R., 1992, ATP-sensitive potassium channels in rat aorta and brain microvascular endothelial cells, Am. J. Physiol. 265:C812–C821.

    Google Scholar 

  • Johns, A., Lateyan, T. W., Lodge, N. J., Ryan, U. S., van Breemen, C., and Adams, D. J., 1987, Calcium entry through receptor-operated channels in bovine pulmonary artery endothelial cells, Tissue Cell 19:733–745.

    Article  PubMed  CAS  Google Scholar 

  • Jones, C. J. H., Kuo, L., Davis, M. J., and Chilian, W. M., 1995, Regulation of coronary blood flow: Coordination of heterogenous control mechanisms in vascular microdomains, Cardiovasc. Res. 29:585– 596.

    PubMed  CAS  Google Scholar 

  • Katnik, C., and Adams, D. J., 1995, An ATP-sensitive potassium conductance in rabbit arterial endothelial cells, J. Physiol. (London) 485:595–606.

    CAS  Google Scholar 

  • Katnik, C., and Adams, D. J., 1997, Characterization of ATP-sensitive potassium channels in freshly dissociated rabbit aortic endothelial cells, Am. J. Physiol. 272:H2507–H2511.

    PubMed  CAS  Google Scholar 

  • Knot, H. J., Zimmermann, P. A., and Nelson, M. T., 1996, Extracellular K+-induced hyperpolarization and dilations of rat coronary and cerebral arteries involve inward rectifier channels, J. Physiol. (London) 492:419–430.

    CAS  Google Scholar 

  • Kohler, M., Hirschberg, B., Bond, C. T., Kinzie, J. M., Marrrion, N. V., Maylie, J., and Adelman, J. P., 1996, Small conductance Ca2+-activated potassium channels from mammalian brain, Science 273:1709–1714.

    Article  PubMed  CAS  Google Scholar 

  • Kuchan, M. J., and Frangos, J. A., 1994, Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells, Am. J. Physiol. 266:C628–C636.

    PubMed  CAS  Google Scholar 

  • Larson, D. M., Kam, E. Y., and Sheridan, J. D., 1983, Junctional transfer in cultured vascular endothelium: I Electrical coupling, J. Membr. Biol. 74:103–113.

    Article  PubMed  CAS  Google Scholar 

  • Laskey, R. E., Adams, D. J., Johns, A., Rubanyi, G. M., and van Breemen, C., 1990, Regulation of [Ca2+]i in endothelial cells by membrane potential, in: Endothelium-Derived Relaxing Factors (G. M. Rubanyi, and P. M. Vanhoute, eds.), Karger, Basel, pp. 128–135.

    Google Scholar 

  • Malinski, T., and Taha, Z., 1992, Nitric oxide release from a single cell measured in situ by a porphyrinic- based microsensor, Nature, 358:676–678.

    Article  PubMed  CAS  Google Scholar 

  • Marchenko, S. M., and Sage, S. O., 1994, Mechanism of acetylcholine action on membrane potential of endothelium of intact rat aorta, Am. J. Physiol. 266:H2388–H2395.

    PubMed  CAS  Google Scholar 

  • Marchenko, S. M., and Sage, S. O., 1996, Calcium-activated potassium channels in the endothelium of intact rat aorta, J. Physiol. (London) 492:53–60.

    CAS  Google Scholar 

  • McCarthy, S. A., Kuzy, I., Gatter, K. C., and Bicknell, R., 1991, Heterogeneity of the endothelial cell and its role in organ preference of tumor metastasis, Trends, Pharmacol. Sci. 12:462–467.

    Article  CAS  Google Scholar 

  • McGiff, J. C., 1991, Cytochrome P-450 metabolism of arachidonic acid, Annu. Rev. Pharmacol. Toxicol. 31:339–369.

    Article  PubMed  CAS  Google Scholar 

  • Mistry, D. K., and Garland, C. J., 1998, Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BKCa) in smooth muscle cells isolated from the rat mesenteric artery, Br. J. Pharmacol. 124:1131–1140.

    Article  PubMed  CAS  Google Scholar 

  • Mombouli, J-V., and Vanhoutte, P. M., 1997, Endothelium-derived hyperpolarizing factor(s): updating the unknown, Trends, Pharmacol. Sci. 18:252–256.

    Article  CAS  Google Scholar 

  • Mombouli, J-V., Schaeffer, G., Holzmann, S., Kostner, G. M., and Graier, W. F., 1999, Anandamide-induced mobilization of cytosolic Ca2+ in endothelial cells, Br. J. Pharmacol. 126:1593–1600.

    Article  PubMed  CAS  Google Scholar 

  • Moncada, S., Gryglewski, R. J., Bunting, S., and Vane, J. R., 1976, An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation, Nature 263:663–665.

    Article  PubMed  CAS  Google Scholar 

  • Mukai, K., Rosai, J., and Burgdorf, W. H., 1980, Localization of factor VIII-related antigen in vascular endothelial cells using an immunoperoxidase method, Am. J. Surg. Pathol. 4:273–276.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, M. E., and Brayden, J. E., 1995, Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels, J. Physiol. 486:47–58.

    PubMed  CAS  Google Scholar 

  • Nagao, T., Illiano, S., and Vanhoutte, P. M., 1992, Calmodulin antagonists inhibit endothelium-dependent hyperpolarization in canine coronary artery, Br. J. Pharmacol. 197:282–286.

    Google Scholar 

  • Nakache, M., and Gaub, H. E., 1988, Hydrodynamic hyperpolarization of endothelial cells, Proc. Natl. Acad. Sci. U.S.A. 85:1841–1843.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, M. T., and Quayle, J. M., 1995, Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 268:C794–C822.

    Google Scholar 

  • Nilius, B., and Riemann, D., 1990, Ion channels in human endothelial cells, Gen. Physiol. Biophys. 9:89–112.

    PubMed  CAS  Google Scholar 

  • Nilius, B., Viana, F., and Droogmans, G., 1997, Ion channels in vascular endothelium, Ann. Rev. Physiol. 59:145–170.

    Article  CAS  Google Scholar 

  • Northover, B. J., 1980, The membrane potential of vascular endothelial cells, Adv. Microcirc. 9:135–160.

    CAS  Google Scholar 

  • Ohashi, M., Satoh, K., and Itoh, T., 1999, Acetylcholine-induced membrane potential changes in endothelial cells of rabbit aortic valve, Br. J. Pharmacol. 126:19–26.

    Article  PubMed  CAS  Google Scholar 

  • Okazaki, K., Endou, M., and Okamura, F., 1998, Involvement of barium-sensitive K+ channels in endothelium-dependent vasodilation produced by hypercapnia in rat mesenteric vascular beds, Br. J. Pharmacol. 125:168–174.

    Article  PubMed  CAS  Google Scholar 

  • Olesen, S. P., and Bundgaard, M., 1993, ATP-dependent closure and reactivation of inward rectifier K+ channels in endothelial cells, Circ. Res. 73:492–495.

    Article  PubMed  CAS  Google Scholar 

  • Olesen, S. P., Clapham, D. E., and Davies, P. F., 1988a, Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331:168–170.

    Article  PubMed  CAS  Google Scholar 

  • Olesen, S. P., Davies, P. F., and Clapham, D. E., 1988b, Muscarinic-activated K+ current in bovine aortic endothelial cells, Circ. Res. 62:1059–1064.

    Article  PubMed  CAS  Google Scholar 

  • Ordway, R. W., Walsh, J. V., and Singer, J. J., 1989, Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells, Science 244:1176–1179.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, R. M. J., Ferrige, A. G., and Moncada, S., 1987, Nitric oxide release accounts for biological activity of endothelium-derived relaxing factor, Nature 327:524–526.

    Article  PubMed  CAS  Google Scholar 

  • Parekh, A. B., and Penner, R., 1997, Store-depletion and calcium influx, Physiol. Rev. 77:901–930.

    PubMed  CAS  Google Scholar 

  • Parsaee, H., Ewan, J. R., Joseph, S., and MacDermott, J., 1992, Differential sensitivities of the prostacyclin and nitric oxide biosynthetic pathways to cystolic calcium in bovine aortic endothelial cells, Br. J. Pharmacol. 107:1013–1019.

    Article  PubMed  CAS  Google Scholar 

  • Plane, F., Pearson, T., and Garland C. J., 1995, Multiple pathways underlying endothelium-dependent relaxation in the rabbit isolated femoral artery, Br. J. Pharmacol. 335:31–38.

    Article  Google Scholar 

  • Plane, F., Holland, M., Waldron, G. J., Garland, C. J., and Boyle, J. P., 1997, Evidence that anandamide and EDHF act via different mechanisms in rat isolated mesenteric arteries, Br. J. Pharmacol. 121: 1509–1511.

    Article  PubMed  CAS  Google Scholar 

  • Pollock, J. S., Fostermann, U., Mitchell, J. A., Warner, T. D., Schmidt, H. H. H. W., Nakane, M., and Murad, F., 1991, Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells, Proc. Natl. Acad. Sci. U.S.A. 88:10480–10484.

    Article  PubMed  CAS  Google Scholar 

  • Popp, R., Bauersachs, J., Hecker, M., Fleming, I., and Busse, R., 1996a, A transferable β-naphthoflavone-inducible hyperpolarizing factor is synthesized by native and cultured porcine coronary endothelial cells, J. Physiol. 497:699–709.

    PubMed  CAS  Google Scholar 

  • Popp, R., Bauersachs, J., Sauer, E., Hecker, M., Fleming, I., and Busse, R., 1996b, The cytochrome P450 monooxygenase pathway and nitric oxide-independent relaxations, in: Endothelium-Derived Hyperpolarizing Factor (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. 115–127

    Google Scholar 

  • Popp, R., Fleming, L, and Busse, R., 1998, Pulsatile stretch in coronary arteries elicits release of endothelium- derived hyperpolarizating factor: A modulator of arterial compliance, Circ. Res. 82:696–703.

    Article  PubMed  CAS  Google Scholar 

  • Quayle, J. M., McCarrron, J. G., Brayden, J. E., and Nelson, M. T., 1993, Inward rectifier K+ currents in smooth muscle cells from rat resistance-sized cerebral arteries, Am. J. Physiol 265:C1363–C1370.

    PubMed  CAS  Google Scholar 

  • Quayle, J. M., Dart, C., and Standen, N. B., 1996, The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle, J. Physiol. 494:715–726.

    PubMed  CAS  Google Scholar 

  • Quayle, J. M., Nelson, M. T., and Standen, N. B., 1997, ATP-sensitive and inwardly rectifying potassium channels in smooth muscle, Physiol. Rev. 77:1165–1232.

    PubMed  CAS  Google Scholar 

  • Quignard, J-F., Félŵtou, M., Thollon, C., Vilaine, J.-P, Duhault, J., and Vanhoutte, P. M., 1999, Potassium ions and endothelium-derived hyperpolarizing factor in guinea pig carotid and porcine coronary arteries, Br. J. Pharmacol. 127:27–34.

    Article  PubMed  CAS  Google Scholar 

  • Quilley, J., Fulton, D., and McGiff, J. C., 1997, Commentary: Hyperpolarizing factors, Biochem. Pharmacol. 54:1059–1070.

    Article  PubMed  CAS  Google Scholar 

  • Randall, M. D., Alexander, S. P. H., Bennett, T., Boyd, E. A., Fry, J. R., Gardiner, S.M., Kemp, P. A., McCulloch, A. I., and Kendall, D. A., 1996, An endogenous cannabinoid as an endothelium-derived vasorelaxant, Biochem. Biophys. Res. Commun. 229:114–120.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, B. E., Bonev, A. D., and Nelson, M. T., 1996, Inward rectifier K+ currents in smooth muscle cells from rat coronary arteries: Block by Mg2+, Ca2+ and Ba2+, Am. J. Physiol. 271:H696–H705.

    PubMed  CAS  Google Scholar 

  • Rusko, J., Tanzi, F., Van Breemen, C., and Adams, D. J., 1992, Calcium-activated potassium channels in native endothelial cells from rabbit aorta: Conductance, Ca2+ sensitivity and block, J. Physiol. 455:601–621.

    PubMed  CAS  Google Scholar 

  • Segal, S. S., and Duling, B. R., 1986, Flow control among microvessels coordinated by intercellular conduction. Science 234:868–870.

    Article  PubMed  CAS  Google Scholar 

  • Setoguchi, M., Ohya, Y., Abe, I., and Fujishima, M., 1997, Stretch-activated whole-cell currents in smooth muscle cells from mesenteric resistance artery of guinea pig, J. Physiol. 501:343–353.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, N. R., and Davis, M. J., 1994, Mechanism of substance P-induced hyperpolarization of porcine coronary artery endothelial cells. Am. J. Physiol. 266:H156–H164.

    PubMed  CAS  Google Scholar 

  • Shaul, P. W., and Anderson, R. G. W. 1998, Role of plasmalemmal caveolae in signal transduction, Proc. Nat. Acad. Sci. U.S.A. 275:845–851.

    Google Scholar 

  • Shaul, P. W., Smart, E. J., Robinson, L. J., German, Z., Yuhanna, I. S., Ying, Y., Anderson, R. G., and Michel, T. 1996, Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae, J. Biol. Chem. 271:6518–6522.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, M., Ishida, T., Traub, O., Corson, M. A., and Berk, B. C., 1997, Mechanotransduction in endothelial cells: Temporal signalling events in response to shear stress, J. Vasc. Res. 34:212–219.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, K., Schini, V., and Stoeckel, H., 1987, Voltage-activated potassium, but not calcium currents, in cultured bovine aortic endothelial cells, Pflügers Arch. 410:385–393.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, H. J., Chaytor, A. T., Evans, W. H., and Griffith, T. M., 1998, Inhibition of the gap junctional component of endothlium-dependent relaxations in rabbit iliac artery by 18a-glycyrrhetinic acid, Br. J. Pharmacol. 125:1–3.

    Article  PubMed  CAS  Google Scholar 

  • Thorin, E., Huang, P. L., Fishman, M. C., and Bevan, J. A., 1998, Nitric oxide inhibits a2-adrenoceptor-mediated endothelium-dependent vasodilation, Circ. Res. 82:1323–1329.

    Article  PubMed  CAS  Google Scholar 

  • Triggle, C. R., Ding, H., Lovren, F., Kubes, P., and Waldron, G. J., 1998, Endothelium-dependent vascular relaxation in eNOS knockout mice, Pharmacol. Toxicol. 83(Suppl.1):99.

    Google Scholar 

  • Triggle, C. R., Dong, H., Waldron, G. J., and Cole, W. C, 1999, Endothelium-derived hyperpolarizing factor(s): Species and tissue heterogeneity, Clin. Exp. Pharmacol. Physiol. 26:176–179.

    Article  PubMed  CAS  Google Scholar 

  • Vaca, L., 1996, Calmodulin inhibits calcium influx current in vascular endothelium, FEBS Lett. 300:289–293.

    Article  Google Scholar 

  • Vaca, L., and Kunze, D. L., 1993, Depletion and refilling of intracellular Ca2+ stores induces oscillations of Ca2+ current. Am. J. Physiol. 267:C920–C925.

    Google Scholar 

  • Vaca, L., and Kunze, D. L., 1994, Depletion of intracellular Ca2+ stores activates a Ca2+ selective channel in vascular endothelium. Am. J. Physiol. 267:C733–C738.

    Google Scholar 

  • Vaca, L., and Kunze, D. L., 1995, IP3 activated Ca2+ channels in the plasma membrane of cultured vascular endothelial cells. Am. J. Physiol. 269:C733–C738.

    PubMed  CAS  Google Scholar 

  • Vanheel, B., and van de Voorde, J., 1997, Evidence against the involvement of cytochrome P450 metabolites in endothelium-dependent hyperpolarization of the rat main mesenteric artery, J. Physiol (London) 501:331–341.

    Article  CAS  Google Scholar 

  • Vanhoutte, P. M., 1988, Vascular endothelium and Ca2+ antagonists, J. Cardiovasc. Pharmacol. 12(Suppl. 6):521–528.

    Article  Google Scholar 

  • Vanhoutte, P. M., 1996, Endothelium-Derived Hyperpolarizing Factor, Harwood Academic Publishers, Amsterdam.

    Google Scholar 

  • Vanhoutte, P. M., and Félétou, M. 1996, Conclusion: Existence of multiple endothelium-derived hyperpolarizing factor, in: Endothelium-Derived Hyperpolarizing Factor (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. ????

    Google Scholar 

  • Vanhoutte, P. M., Félétou, M., Boulanger, C.M., Hoffner, U. and Rubanyi, G.M., 1996, Existence of multiple endothelium-derived relaxing factors, in: Endothelium-Derived Hyperpolarizing Factor (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. 88–111.

    Google Scholar 

  • von der Weid, P-Y. and Beny, J.L., 1992, Effect of Ca2+ ionophores on membrane potential on pig coronary artery endothelial cells, Am. J. Physiol. 262:H1823–1831.

    PubMed  Google Scholar 

  • Waldron, G. J., and Garland, C. J., 1994, Effect of potassium channel blockers on L-NAME-insensitive relaxations in rat small mesenteric artery, Can. J. Physiol. Pharmacol. 72 (Suppl. 1):26.

    Google Scholar 

  • Waldron, G. J., Dong, H., Cole, W. C., and Triggle, C. R., 1996, Endothelium-dependent hyperpolarization of vascular smooth muscle: role for a non-nitric oxide synthase product, Acta. Pharma. Sin. 17:3–7.

    CAS  Google Scholar 

  • Weidelt, T., Boldt, W., and Markward, F., 1997, Acetylcholine-induced K+ currents in smooth muscle cells of intact rat small arteries, J. Physiol. (London) 500:617–630.

    CAS  Google Scholar 

  • Wellman, G. C., Quayle, J. M., and Standen, N. B., 1996, Evidence against the association of the sulphonylurea receptor with endogenous Kir family members other than KATP in coronary vascular smooth muscle, Pflügers Arch. 432:355–357.

    Article  PubMed  CAS  Google Scholar 

  • White, R., and Hiley, C. R., 1997, A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery, Br. J. Pharmacol. 122:1573–1584.

    Article  PubMed  CAS  Google Scholar 

  • White, R., and Hiley, C. R., 1998, Effects of K+ channel openers on relaxations to nitric oxide and endothelium-derived hyperpolarizing factor in rat mesenteric artery, Eur. J. Pharmacol. 357:41–51.

    Article  PubMed  CAS  Google Scholar 

  • Woodley, N., and Barclay, J. K., 1994, Cultured endothelial cells from distinct vacular areas show differential responses to agonists, Can. J. Physiol. Pharmacol. 73:1007–1012.

    Article  Google Scholar 

  • Yajima, K., Nishiyama, M., Yamamoto, Y., and Suzuki, H., 1999, Inhibition of endothelium-dependent hyperpolarization by endothelial prostanoids in guinea-pig coronary artery, Br. J. Pharmacol. 126:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa, M., Inoue, A., Takuwa, Y., Mitsui, Y., Kobayashi, M., and Masaki, T., 1989, The human preproendothelin-1 gene: Possible regulation by endothelial phosphoinositide turnover signaling, J. Cardiovasc. Pharmacol. 13 (Suppl. 5):S13–17.

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt, P. M., Edwards, G., Weston, A. H., Larsson, B., and Hoegestatt, E. D., 1997, Involvement of voltage-dependent potassium channels in the EDHF-mediated relaxation of rat hepatic artery, Br. J. Pharmacol. 121:141–149.

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt, P. M., Plane, F., Paulsson, M., Garland, C. J., and Högestatt, E. D., 1998, Interactions between endothelium-derived relaxing factors in the rat hepatic artery: Focus on regulation of EDHF, Br. J. Pharmacol. 124:992–1000.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Triggle, C.R. (2001). Endothelial Cell K+ Channels, Membrane Potential and the Release of Vasoactive Factors from the Vascular Endothelium. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics