Endothelial Cell K+ Channels, Membrane Potential and the Release of Vasoactive Factors from the Vascular Endothelium

  • Christopher R. Triggle


Potassium channels play an important role in the regulation of the membrane potential (E m ) of endothelial cells and thereby modulate the entry of extracellular Ca2+ (Adams, 1994; Himmel et al., 1993; Adams et al., 1989). Ca2+ entry in concert with intracellular Ca2+ release is important for the synthesis of a number of endothelium-derived vasoactive factors. Thus, the synthesis of the endothelium-derived relaxing factor (EDRF), nitric oxide (NO), and of prostacyclin (PGI2) requires, respectively, the Ca2+-calmodulin-dependent activation of the constitutive endothelial cell nitric oxide synthase (eNOS) and the Ca2+ -dependent activation of phospholipase A2 (Pollock et al., 1991; Bredt and Snyder, 1990; Carter et al., 1988; Hallam et al., 1988). Similarly, the synthesis of the vasoconstrictor peptide endothelin-1 (ET-1) requires the mobilization of intracellular Ca2+ and the activation of protein kinase C (Yanagisawa et al., 1989).


Nitric Oxide Bovine Aorta Endothelial Cell Rabbit Thoracic Aorta EDRF Release Native Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. J., 1994, Ionic channels in vascular endothelial cells, Trends Cardiovasc. Med. 4:18–26.PubMedCrossRefGoogle Scholar
  2. Adams, D. J., Barakeh, J., Laskey, R., and van Breemen, C., 1989, Ion channels and regulation of intracellular calcium in vascular endothelial cells, FASEB J. 3:2389–2400.PubMedGoogle Scholar
  3. Adeagbo, A. S. O., and Triggle, C. R., 1991, Effects of some inorganic divalent cations and protein kinase C inhibitors on endothelium-dependent vasorelaxation in rat isolated aorta and mesenteric arteries, J. Cardiovasc. Pharmacol. 18:511–521.PubMedCrossRefGoogle Scholar
  4. Adeagbo, A. S., Triggle, C. R., 1993, Varying extracellular [K+]: a functional approach to separating EDHF-and EDNA-related mechanisms in perfused rat mesenteric arterial bed, J. Cardiovasc. Pharmacol. 21(3): 423–429.PubMedCrossRefGoogle Scholar
  5. Ayajiki, K., Kindermann, M., Hecker, M., Fleming, I., and Busse, R., 1996, Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells, Circ. Res. 78:750–758.PubMedCrossRefGoogle Scholar
  6. Bauersachs, J., Popp, R., Hecker, M., Sauer, E., Fleming, I., and Busse, R., 1996, Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor, Circulation 94:3341–3346.PubMedCrossRefGoogle Scholar
  7. Beny, J. L., and Pacicca, C., 1994, Bidirectional electrical communication between smooth muscle and endothelial cells in the pig coronary artery, Am. J. Physiol. 260:H1454–1472.Google Scholar
  8. Bkaily, G., D’Orléans-Juste, P., Naik, R., Perodin, J., Stankova, J., Abdulnour, E., and Rola-Pleszczynski, M., 1993, PAI activation of a voltage-gated R-type Ca2+ channels in human and canine aortic endothelial cells, Br. J. Pharmacol. 110:519–520.PubMedCrossRefGoogle Scholar
  9. Bolotina, V. M., Najibi, S., Palacino, J. J., Pagano, P. J., and Cohen, R. A., 1994, Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscles, Nature 368:850–853.PubMedCrossRefGoogle Scholar
  10. Brayden, J. E., 1990, Membrane hyperpolarization is a mechanism of endothelium-dependent cerebral vasodilation, Am. J. Physiol. 259:H668–H673.PubMedGoogle Scholar
  11. Bredt, D. S., and Snyder, S. H., 1990, Isolation of nitric oxide synthase, a calmodulin-requiring enzyme, Proc. Natl. Acad. Sci. U.S.A. 87:682–685.PubMedCrossRefGoogle Scholar
  12. Bregestovski, P., Bakhramov, A., Danilov, S., Moldobaeva, A., and Takeda, K., 1988, Histamine-induced inward currents in cultured endothelial cells from human umbilical vein, Br. J. Pharmacol. 95:429–436.PubMedCrossRefGoogle Scholar
  13. Busse, R., and Fleming, I., 1998, Pulsatile stretch and shear stress: Physical stimuli determining the production of endothelium-derived relaxing factors, J. Vasc. Res. 35:73–84.PubMedCrossRefGoogle Scholar
  14. Busse, R., Eichtner, H., Lucknoff, A., and Kohlhardt, M., 1988, Hyperpolarization and increased free calcium in acetylcholine-stimulated endothelial cells, Am. J. Physiol. 255:H965-H969.PubMedGoogle Scholar
  15. Cai, S., Garneau, L., and Sauve, R., 1998, Single-channel characterization of the pharmacological properties of the K (Ca2+) channel of intermediate conductance in bovine aortic endothelial cells, J. Membr. Biol. 163:147–158.PubMedCrossRefGoogle Scholar
  16. Carter, T. D., Hallam, T. J., Cussack, N. J., and Pearson, J. D., 1988, Regulation of P2Y-purinoceptor-mediated prostacyclin release from human endothelial cells by cytoplasmic calcium concentration, Br. J. Pharmacol. 95:429–436.CrossRefGoogle Scholar
  17. Chataigneau, T., Feletou, M., Duhault, J., and Vanhoutte, P. M., 1998a, Epoxyeicosatrienoic acids, potassium channel blockers and endothelium-dependent hyperpolarization in the guinea pig carotid artery, Br. J. Pharmacol. 123:574–580.PubMedCrossRefGoogle Scholar
  18. Chataigneau, T., Feletou, M., Thollon, C., Villeneuve, N., Vilaine, J-P., Duhault, J., and Vanhoutte, P. M., 1998b, Cannabinoid CB1 receptor and endothelium-dependent hyperpolarization in guinea-pig carotid, rat mesenteric and porcine coronary arteries, Br. J. Pharmacol. 123:968–974.PubMedCrossRefGoogle Scholar
  19. Chataigneau, T., Feletou, M., Huang, P. L., Fishman, M. C., Duhault, J., and Vanhoutte, P. M., 1999, Acetylcholine-induced relaxation in blood vessels from endothelial nitric oxide synthase knockout mice, Br. J. Pharmacol. 126:219–226.PubMedCrossRefGoogle Scholar
  20. Chaytor, A. T., Evans, W. H., and Griffith, T. M., 1998, Central role of heterocellular gap junctional communication in endothelium-dependent relaxation of rabbit arteries, J. Physiol. (London) 508:561–573.CrossRefGoogle Scholar
  21. Chen, G., and Cheung, D. W., 1992, Characterization of acetylcholine-induced membrane hyperpolarization in endothelial cells, Circ. Res. 70:257–263.PubMedCrossRefGoogle Scholar
  22. Chen, G. and Suzuki, H., 1990, Calcium-dependency of the endothelium-dependent hyperpolarization in smooth muscle cells of the rabbit carotid artery, J. Physiol. (London) 421:521–534.Google Scholar
  23. Cheung, D. W., Chen G., MacKay, M. J., and Burnette, E., 1999, Regulation of vascular tone by endothelium-derived hyperpolarizing factor, Clin. Exp. Pharmacol. Physiol. 26:172–175.PubMedCrossRefGoogle Scholar
  24. Cook, N. S., and Quast, U., 1990, Potassium channel pharmacology in: Potassium Channels: Structure, Classification, Function and Therapeutic Potential (N. S. Cook, ed.), Halstead Press, New York, pp. 181–255.Google Scholar
  25. Daut, J., Mehrke, G., Nees, S., and Newman, W. H., 1987, Passive electrical properties and electrogenic sodium transport of cultured guinea-pig coronary endothelial cells, J. Physiol. (London) 402:237–254.Google Scholar
  26. Daut, J., Standen, N. B., and Nelson, M. T., 1994, The role of the membrane potential of endothelial and smooth muscle cells in the regulation of coronary blood flow, J. Cardiovasc. Electrophysiol. 5:154–181.PubMedCrossRefGoogle Scholar
  27. Davies, P. F., 1995, Flow-mediated signal transduction in endothelial cells In: Flow Dependent Regulation of Vascular Function (J. A. Bevan, G. Kaley, and G. M. Rubanyi eds.), Oxford University Press, New York, pp. 46–61.Google Scholar
  28. Demirel, E., Rusko, J., Laskey, R. E., Adams, D. J., and Van Breemen, C., 1994, TEA inhibits Ach-induced EDRF release: Endothelial Ca2+-dependent K+ channels contribute to vascular tone, Am. J. Physiol. 267:H1135-H1141.PubMedGoogle Scholar
  29. Dong, H., Waldron, G. J., Galipeau, D., Cole, W. C., and Triggle, C. R., 1997, NO/PGI2-independent vasorelaxation and the cytochrome P-450 pathway in rabbit carotid artery, Br. J. Pharmacol. 120:695– 701.PubMedCrossRefGoogle Scholar
  30. Dong, H., Waldron, G. J., Cole, W. C., and Triggle, C. R., 1998, Roles of calcium-activated and voltage-gated rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery, Br. J. Pharmacol. 123:821–832.PubMedCrossRefGoogle Scholar
  31. Doughty, J. M., Plane, F., and Langton, P. D., 1999, Charybdotoxin and apamin block EDHF in rat mesenteric artery if selectively applied to the endothelium, Am. J. Physiol. 276:H1107–H1112.PubMedGoogle Scholar
  32. Edwards, F. R., and Hirst, G. D. S., 1988, Inward rectification in sub-mucosal arterioles of guinea-pig ileum, J. Physiol. (London) 404:437–454.Google Scholar
  33. Edwards, F. R., Hirst, G. D. S., and Silverberg, G. D., 1988, Inward rectification of rat cerebral arterioles: Involvement of potassium ions in autoregulation, J. Physiol. (London) 404:455–566.Google Scholar
  34. Edwards, G., Dora, K. A, Gardener, M. J., Garland, C. J., and Weston, A. H., 1998, K+ is an endothelium-derived hyperpolarizing factor in rat arteries, Nature 296:269–272.Google Scholar
  35. Faraci, F. M. and Heistad, D. D., 1998, Regulation of the cerebral circulation: Role of endothelium and potassium channels, Physiol. Rev. 78:53–97.PubMedGoogle Scholar
  36. Félétou, M., and Vanhoutte, P. M., 1988, Endothelium-dependent hyperpolarization of canine coronary smooth muscle, Br. J. Pharmacol. 93:515–524.PubMedCrossRefGoogle Scholar
  37. Fransen, P., Katnik, C., and Adams, D. J., 1998, ACh- and caffeine-induced Ca2+ mobilization and current activation in rabbit arterial endothelial cells, Am. J. Physiol. 275:H1748–H1758.PubMedGoogle Scholar
  38. Fukao, M., Hattori, Y., Kanno, M., Sakuma, I., and Kitabatake, A., 1997, Sources of Ca2+ in relation to generation of acetylcholine-induced endothelium-dependent hyperpolarization in rat mesenteric artery, Br. J. Pharmacol 120:1328–1334.PubMedCrossRefGoogle Scholar
  39. Fulton, D., McGiff, J. C., and Quilley, J., 1994, Role of K+ channels in the vasodilator response to bradykinin in the rat heart, Br. J. Pharmacol 113:954–958.PubMedCrossRefGoogle Scholar
  40. Furchgott, R. F., and Zawadski, J. V., 1980, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature 288:373–375.PubMedCrossRefGoogle Scholar
  41. Galvez, A., Gimenez-Gallego, G., Reuben, J. P., Roy-Contancin, L. Feigenbaum, P., Kaczorowski, G. J., and Garcia, M. L., 1990, Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from the venom of the scorpion Buthus tamulus, J. Biol Chem. 265:11083–11090.PubMedGoogle Scholar
  42. Garland, C. J., Plane, F., Kemp, B. J. K., and Cocks, T. K., 1996, Endothelium-dependent hyperpolarization: A role in the control of vascular tone, Trends Pharmacol. Sci. 16:23–30.CrossRefGoogle Scholar
  43. Gravier, W. F., Simecek, S., and Sturek, M., 1995, Cytochrome P450 mono-oxygenase-regulated signalling of endothelial Ca2+ entry, J. Physiol. (London) 483:259–274.Google Scholar
  44. Groschner, K., Gravier, W. F., and Kuskovetz, W.R., 1992, Activation of a small conductance Ca2+- dependent K+ channel contributes to bradykinin-induced stimulation of nitric oxide synthesis in pig aortic endothelial cells, Biochim. Biophys. Acta 1137:162–170.PubMedCrossRefGoogle Scholar
  45. Hallam, T. J., Pearson, J. D., and Needham, L., 1988, Thrombin-stimulated elevation of endothelial cell cytoplasmic-free calcium concentration causes prostacyclin-production, Biochem. J. 257:243–249.Google Scholar
  46. Hammarström, A. K. M., Parkington, H. C., Tare, M., and Coleman, H. A., 1999, Endothelium-dependent hyperpolarization in resting and depolarized mammary and coronary arteries of guinea pigs, Br. J. Pharmacol 126:421–428.PubMedCrossRefGoogle Scholar
  47. Harach, H. R., Jasani, B., and Williams, E. D., 1983, Factor VIII as a marker of endothelial cells in follicular carcinoma of the thyroid, J. Clin. Pathol. 36:1050–1054.PubMedCrossRefGoogle Scholar
  48. Harris, D., Kendall, D. A., and Randall, M. D., 1999, Characterization of cannabinoid receptors coupled to vasorelaxation by endothelium-derived hyperpolarizing factor, Naunyn-Schmiedeberg’s Arch. Pharmacol. 359:48–52.CrossRefGoogle Scholar
  49. Hashitani, H., and Suzuki, H., 1997, K+ channels which contribute to the acetylcholine-induced hyperpolarization in smooth muscle of the guinea-pig submucosal arteriole, J. Physiol. (London) 501:319–329.CrossRefGoogle Scholar
  50. Hecker, M., Bara, A. T., Bauersachs, J., and Busse, R., 1994, Characterization of endothelium-derived hyperpolarizing factor as a cytochrome P-450-derived arachidonic acid metabolite in mammals, J. Physiol (London) 481:407–414.Google Scholar
  51. Himmel, H. M., Whorton, A. R., and Strauss, H. C., 1993, Intracellular calcium, currents, and stimulus-response coupling in endothelial cells, Hypertension 21:112–127.PubMedCrossRefGoogle Scholar
  52. Hoebel, B. G., Kostner, G. M., and Gravier, W. F., 1997, Activation of microsomal cytochrome P450 mono-oxygenase by Ca2+-store depletion and its contribution to Ca2+ entry in porcine aortic endothelial cells, Br. J. Pharmacol. 121:1579–1588.PubMedCrossRefGoogle Scholar
  53. Hosoki, E., and Iijima, T., 1994, Chloride-sensitive Ca2+ entry by histamine and ATP in human aortic endothelial cells, Eur. J. Pharmacol. 266:213–218.PubMedCrossRefGoogle Scholar
  54. Hutcheson, I. R., and Griffith, T. M., 1994, Heterogenous population of K+ channels mediate EDRF release to flow but not agonists in rabbit aorta,Am. J. Physiol. 266:H590–H596.PubMedGoogle Scholar
  55. Hutcheson, I. R., and Griffith, T. M., 1996, Mechanotransductions through the endothelial cytoskeleton: Mediation of flow but not agonist-induced EDRF release, Br. J. Pharmacol. 118:720–726.PubMedCrossRefGoogle Scholar
  56. Hutcheson, I. R., Chaytor, A. T., Evans, W. H., and Griffith, T. M., 1999, Nitric oxide-independent relaxations to acetylcholine and A23187 involve different routes of heterocellular communication. Role of gap junctions and phospholipase A2, Circ. Res. 84:53–63.PubMedCrossRefGoogle Scholar
  57. Hwa, J. J., Ghibaudi, L., Williams, P., and Chatterjee, M., 1994, Comparison of acetylcholine-dependent relaxation in large and small arteries of rat mesenteric vascular bed, Am. J. Physiol. 266:H952–H958.PubMedGoogle Scholar
  58. Illiano, S., Nagao, T., and Vanhoutte, P. M., 1992, Calmidazolium, a calmodulin inhibitor, inhibits endothelium-dependent relaxations resistant to nitro-L-arginine in the canine coronary artery, Br. J. Pharmacol. 107:387–392.PubMedCrossRefGoogle Scholar
  59. Janigro, D., West, G. A., Gordon, E. L., and Winn, H. R., 1992, ATP-sensitive potassium channels in rat aorta and brain microvascular endothelial cells, Am. J. Physiol. 265:C812–C821.Google Scholar
  60. Johns, A., Lateyan, T. W., Lodge, N. J., Ryan, U. S., van Breemen, C., and Adams, D. J., 1987, Calcium entry through receptor-operated channels in bovine pulmonary artery endothelial cells, Tissue Cell 19:733–745.PubMedCrossRefGoogle Scholar
  61. Jones, C. J. H., Kuo, L., Davis, M. J., and Chilian, W. M., 1995, Regulation of coronary blood flow: Coordination of heterogenous control mechanisms in vascular microdomains, Cardiovasc. Res. 29:585– 596.PubMedGoogle Scholar
  62. Katnik, C., and Adams, D. J., 1995, An ATP-sensitive potassium conductance in rabbit arterial endothelial cells, J. Physiol. (London) 485:595–606.Google Scholar
  63. Katnik, C., and Adams, D. J., 1997, Characterization of ATP-sensitive potassium channels in freshly dissociated rabbit aortic endothelial cells, Am. J. Physiol. 272:H2507–H2511.PubMedGoogle Scholar
  64. Knot, H. J., Zimmermann, P. A., and Nelson, M. T., 1996, Extracellular K+-induced hyperpolarization and dilations of rat coronary and cerebral arteries involve inward rectifier channels, J. Physiol. (London) 492:419–430.Google Scholar
  65. Kohler, M., Hirschberg, B., Bond, C. T., Kinzie, J. M., Marrrion, N. V., Maylie, J., and Adelman, J. P., 1996, Small conductance Ca2+-activated potassium channels from mammalian brain, Science 273:1709–1714.PubMedCrossRefGoogle Scholar
  66. Kuchan, M. J., and Frangos, J. A., 1994, Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells, Am. J. Physiol. 266:C628–C636.PubMedGoogle Scholar
  67. Larson, D. M., Kam, E. Y., and Sheridan, J. D., 1983, Junctional transfer in cultured vascular endothelium: I Electrical coupling, J. Membr. Biol. 74:103–113.PubMedCrossRefGoogle Scholar
  68. Laskey, R. E., Adams, D. J., Johns, A., Rubanyi, G. M., and van Breemen, C., 1990, Regulation of [Ca2+]i in endothelial cells by membrane potential, in: Endothelium-Derived Relaxing Factors (G. M. Rubanyi, and P. M. Vanhoute, eds.), Karger, Basel, pp. 128–135.Google Scholar
  69. Malinski, T., and Taha, Z., 1992, Nitric oxide release from a single cell measured in situ by a porphyrinic- based microsensor, Nature, 358:676–678.PubMedCrossRefGoogle Scholar
  70. Marchenko, S. M., and Sage, S. O., 1994, Mechanism of acetylcholine action on membrane potential of endothelium of intact rat aorta, Am. J. Physiol. 266:H2388–H2395.PubMedGoogle Scholar
  71. Marchenko, S. M., and Sage, S. O., 1996, Calcium-activated potassium channels in the endothelium of intact rat aorta, J. Physiol. (London) 492:53–60.Google Scholar
  72. McCarthy, S. A., Kuzy, I., Gatter, K. C., and Bicknell, R., 1991, Heterogeneity of the endothelial cell and its role in organ preference of tumor metastasis, Trends, Pharmacol. Sci. 12:462–467.CrossRefGoogle Scholar
  73. McGiff, J. C., 1991, Cytochrome P-450 metabolism of arachidonic acid, Annu. Rev. Pharmacol. Toxicol. 31:339–369.PubMedCrossRefGoogle Scholar
  74. Mistry, D. K., and Garland, C. J., 1998, Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BKCa) in smooth muscle cells isolated from the rat mesenteric artery, Br. J. Pharmacol. 124:1131–1140.PubMedCrossRefGoogle Scholar
  75. Mombouli, J-V., and Vanhoutte, P. M., 1997, Endothelium-derived hyperpolarizing factor(s): updating the unknown, Trends, Pharmacol. Sci. 18:252–256.CrossRefGoogle Scholar
  76. Mombouli, J-V., Schaeffer, G., Holzmann, S., Kostner, G. M., and Graier, W. F., 1999, Anandamide-induced mobilization of cytosolic Ca2+ in endothelial cells, Br. J. Pharmacol. 126:1593–1600.PubMedCrossRefGoogle Scholar
  77. Moncada, S., Gryglewski, R. J., Bunting, S., and Vane, J. R., 1976, An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation, Nature 263:663–665.PubMedCrossRefGoogle Scholar
  78. Mukai, K., Rosai, J., and Burgdorf, W. H., 1980, Localization of factor VIII-related antigen in vascular endothelial cells using an immunoperoxidase method, Am. J. Surg. Pathol. 4:273–276.PubMedCrossRefGoogle Scholar
  79. Murphy, M. E., and Brayden, J. E., 1995, Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels, J. Physiol. 486:47–58.PubMedGoogle Scholar
  80. Nagao, T., Illiano, S., and Vanhoutte, P. M., 1992, Calmodulin antagonists inhibit endothelium-dependent hyperpolarization in canine coronary artery, Br. J. Pharmacol. 197:282–286.Google Scholar
  81. Nakache, M., and Gaub, H. E., 1988, Hydrodynamic hyperpolarization of endothelial cells, Proc. Natl. Acad. Sci. U.S.A. 85:1841–1843.PubMedCrossRefGoogle Scholar
  82. Nelson, M. T., and Quayle, J. M., 1995, Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 268:C794–C822.Google Scholar
  83. Nilius, B., and Riemann, D., 1990, Ion channels in human endothelial cells, Gen. Physiol. Biophys. 9:89–112.PubMedGoogle Scholar
  84. Nilius, B., Viana, F., and Droogmans, G., 1997, Ion channels in vascular endothelium, Ann. Rev. Physiol. 59:145–170.CrossRefGoogle Scholar
  85. Northover, B. J., 1980, The membrane potential of vascular endothelial cells, Adv. Microcirc. 9:135–160.Google Scholar
  86. Ohashi, M., Satoh, K., and Itoh, T., 1999, Acetylcholine-induced membrane potential changes in endothelial cells of rabbit aortic valve, Br. J. Pharmacol. 126:19–26.PubMedCrossRefGoogle Scholar
  87. Okazaki, K., Endou, M., and Okamura, F., 1998, Involvement of barium-sensitive K+ channels in endothelium-dependent vasodilation produced by hypercapnia in rat mesenteric vascular beds, Br. J. Pharmacol. 125:168–174.PubMedCrossRefGoogle Scholar
  88. Olesen, S. P., and Bundgaard, M., 1993, ATP-dependent closure and reactivation of inward rectifier K+ channels in endothelial cells, Circ. Res. 73:492–495.PubMedCrossRefGoogle Scholar
  89. Olesen, S. P., Clapham, D. E., and Davies, P. F., 1988a, Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331:168–170.PubMedCrossRefGoogle Scholar
  90. Olesen, S. P., Davies, P. F., and Clapham, D. E., 1988b, Muscarinic-activated K+ current in bovine aortic endothelial cells, Circ. Res. 62:1059–1064.PubMedCrossRefGoogle Scholar
  91. Ordway, R. W., Walsh, J. V., and Singer, J. J., 1989, Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells, Science 244:1176–1179.PubMedCrossRefGoogle Scholar
  92. Palmer, R. M. J., Ferrige, A. G., and Moncada, S., 1987, Nitric oxide release accounts for biological activity of endothelium-derived relaxing factor, Nature 327:524–526.PubMedCrossRefGoogle Scholar
  93. Parekh, A. B., and Penner, R., 1997, Store-depletion and calcium influx, Physiol. Rev. 77:901–930.PubMedGoogle Scholar
  94. Parsaee, H., Ewan, J. R., Joseph, S., and MacDermott, J., 1992, Differential sensitivities of the prostacyclin and nitric oxide biosynthetic pathways to cystolic calcium in bovine aortic endothelial cells, Br. J. Pharmacol. 107:1013–1019.PubMedCrossRefGoogle Scholar
  95. Plane, F., Pearson, T., and Garland C. J., 1995, Multiple pathways underlying endothelium-dependent relaxation in the rabbit isolated femoral artery, Br. J. Pharmacol. 335:31–38.CrossRefGoogle Scholar
  96. Plane, F., Holland, M., Waldron, G. J., Garland, C. J., and Boyle, J. P., 1997, Evidence that anandamide and EDHF act via different mechanisms in rat isolated mesenteric arteries, Br. J. Pharmacol. 121: 1509–1511.PubMedCrossRefGoogle Scholar
  97. Pollock, J. S., Fostermann, U., Mitchell, J. A., Warner, T. D., Schmidt, H. H. H. W., Nakane, M., and Murad, F., 1991, Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells, Proc. Natl. Acad. Sci. U.S.A. 88:10480–10484.PubMedCrossRefGoogle Scholar
  98. Popp, R., Bauersachs, J., Hecker, M., Fleming, I., and Busse, R., 1996a, A transferable β-naphthoflavone-inducible hyperpolarizing factor is synthesized by native and cultured porcine coronary endothelial cells, J. Physiol. 497:699–709.PubMedGoogle Scholar
  99. Popp, R., Bauersachs, J., Sauer, E., Hecker, M., Fleming, I., and Busse, R., 1996b, The cytochrome P450 monooxygenase pathway and nitric oxide-independent relaxations, in: Endothelium-Derived Hyperpolarizing Factor (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. 115–127Google Scholar
  100. Popp, R., Fleming, L, and Busse, R., 1998, Pulsatile stretch in coronary arteries elicits release of endothelium- derived hyperpolarizating factor: A modulator of arterial compliance, Circ. Res. 82:696–703.PubMedCrossRefGoogle Scholar
  101. Quayle, J. M., McCarrron, J. G., Brayden, J. E., and Nelson, M. T., 1993, Inward rectifier K+ currents in smooth muscle cells from rat resistance-sized cerebral arteries, Am. J. Physiol 265:C1363–C1370.PubMedGoogle Scholar
  102. Quayle, J. M., Dart, C., and Standen, N. B., 1996, The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle, J. Physiol. 494:715–726.PubMedGoogle Scholar
  103. Quayle, J. M., Nelson, M. T., and Standen, N. B., 1997, ATP-sensitive and inwardly rectifying potassium channels in smooth muscle, Physiol. Rev. 77:1165–1232.PubMedGoogle Scholar
  104. Quignard, J-F., Félŵtou, M., Thollon, C., Vilaine, J.-P, Duhault, J., and Vanhoutte, P. M., 1999, Potassium ions and endothelium-derived hyperpolarizing factor in guinea pig carotid and porcine coronary arteries, Br. J. Pharmacol. 127:27–34.PubMedCrossRefGoogle Scholar
  105. Quilley, J., Fulton, D., and McGiff, J. C., 1997, Commentary: Hyperpolarizing factors, Biochem. Pharmacol. 54:1059–1070.PubMedCrossRefGoogle Scholar
  106. Randall, M. D., Alexander, S. P. H., Bennett, T., Boyd, E. A., Fry, J. R., Gardiner, S.M., Kemp, P. A., McCulloch, A. I., and Kendall, D. A., 1996, An endogenous cannabinoid as an endothelium-derived vasorelaxant, Biochem. Biophys. Res. Commun. 229:114–120.PubMedCrossRefGoogle Scholar
  107. Robertson, B. E., Bonev, A. D., and Nelson, M. T., 1996, Inward rectifier K+ currents in smooth muscle cells from rat coronary arteries: Block by Mg2+, Ca2+ and Ba2+, Am. J. Physiol. 271:H696–H705.PubMedGoogle Scholar
  108. Rusko, J., Tanzi, F., Van Breemen, C., and Adams, D. J., 1992, Calcium-activated potassium channels in native endothelial cells from rabbit aorta: Conductance, Ca2+ sensitivity and block, J. Physiol. 455:601–621.PubMedGoogle Scholar
  109. Segal, S. S., and Duling, B. R., 1986, Flow control among microvessels coordinated by intercellular conduction. Science 234:868–870.PubMedCrossRefGoogle Scholar
  110. Setoguchi, M., Ohya, Y., Abe, I., and Fujishima, M., 1997, Stretch-activated whole-cell currents in smooth muscle cells from mesenteric resistance artery of guinea pig, J. Physiol. 501:343–353.PubMedCrossRefGoogle Scholar
  111. Sharma, N. R., and Davis, M. J., 1994, Mechanism of substance P-induced hyperpolarization of porcine coronary artery endothelial cells. Am. J. Physiol. 266:H156–H164.PubMedGoogle Scholar
  112. Shaul, P. W., and Anderson, R. G. W. 1998, Role of plasmalemmal caveolae in signal transduction, Proc. Nat. Acad. Sci. U.S.A. 275:845–851.Google Scholar
  113. Shaul, P. W., Smart, E. J., Robinson, L. J., German, Z., Yuhanna, I. S., Ying, Y., Anderson, R. G., and Michel, T. 1996, Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae, J. Biol. Chem. 271:6518–6522.PubMedCrossRefGoogle Scholar
  114. Takahashi, M., Ishida, T., Traub, O., Corson, M. A., and Berk, B. C., 1997, Mechanotransduction in endothelial cells: Temporal signalling events in response to shear stress, J. Vasc. Res. 34:212–219.PubMedCrossRefGoogle Scholar
  115. Takeda, K., Schini, V., and Stoeckel, H., 1987, Voltage-activated potassium, but not calcium currents, in cultured bovine aortic endothelial cells, Pflügers Arch. 410:385–393.PubMedCrossRefGoogle Scholar
  116. Taylor, H. J., Chaytor, A. T., Evans, W. H., and Griffith, T. M., 1998, Inhibition of the gap junctional component of endothlium-dependent relaxations in rabbit iliac artery by 18a-glycyrrhetinic acid, Br. J. Pharmacol. 125:1–3.PubMedCrossRefGoogle Scholar
  117. Thorin, E., Huang, P. L., Fishman, M. C., and Bevan, J. A., 1998, Nitric oxide inhibits a2-adrenoceptor-mediated endothelium-dependent vasodilation, Circ. Res. 82:1323–1329.PubMedCrossRefGoogle Scholar
  118. Triggle, C. R., Ding, H., Lovren, F., Kubes, P., and Waldron, G. J., 1998, Endothelium-dependent vascular relaxation in eNOS knockout mice, Pharmacol. Toxicol. 83(Suppl.1):99.Google Scholar
  119. Triggle, C. R., Dong, H., Waldron, G. J., and Cole, W. C, 1999, Endothelium-derived hyperpolarizing factor(s): Species and tissue heterogeneity, Clin. Exp. Pharmacol. Physiol. 26:176–179.PubMedCrossRefGoogle Scholar
  120. Vaca, L., 1996, Calmodulin inhibits calcium influx current in vascular endothelium, FEBS Lett. 300:289–293.CrossRefGoogle Scholar
  121. Vaca, L., and Kunze, D. L., 1993, Depletion and refilling of intracellular Ca2+ stores induces oscillations of Ca2+ current. Am. J. Physiol. 267:C920–C925.Google Scholar
  122. Vaca, L., and Kunze, D. L., 1994, Depletion of intracellular Ca2+ stores activates a Ca2+ selective channel in vascular endothelium. Am. J. Physiol. 267:C733–C738.Google Scholar
  123. Vaca, L., and Kunze, D. L., 1995, IP3 activated Ca2+ channels in the plasma membrane of cultured vascular endothelial cells. Am. J. Physiol. 269:C733–C738.PubMedGoogle Scholar
  124. Vanheel, B., and van de Voorde, J., 1997, Evidence against the involvement of cytochrome P450 metabolites in endothelium-dependent hyperpolarization of the rat main mesenteric artery, J. Physiol (London) 501:331–341.CrossRefGoogle Scholar
  125. Vanhoutte, P. M., 1988, Vascular endothelium and Ca2+ antagonists, J. Cardiovasc. Pharmacol. 12(Suppl. 6):521–528.CrossRefGoogle Scholar
  126. Vanhoutte, P. M., 1996, Endothelium-Derived Hyperpolarizing Factor, Harwood Academic Publishers, Amsterdam.Google Scholar
  127. Vanhoutte, P. M., and Félétou, M. 1996, Conclusion: Existence of multiple endothelium-derived hyperpolarizing factor, in: Endothelium-Derived Hyperpolarizing Factor (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. ????Google Scholar
  128. Vanhoutte, P. M., Félétou, M., Boulanger, C.M., Hoffner, U. and Rubanyi, G.M., 1996, Existence of multiple endothelium-derived relaxing factors, in: Endothelium-Derived Hyperpolarizing Factor (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. 88–111.Google Scholar
  129. von der Weid, P-Y. and Beny, J.L., 1992, Effect of Ca2+ ionophores on membrane potential on pig coronary artery endothelial cells, Am. J. Physiol. 262:H1823–1831.PubMedGoogle Scholar
  130. Waldron, G. J., and Garland, C. J., 1994, Effect of potassium channel blockers on L-NAME-insensitive relaxations in rat small mesenteric artery, Can. J. Physiol. Pharmacol. 72 (Suppl. 1):26.Google Scholar
  131. Waldron, G. J., Dong, H., Cole, W. C., and Triggle, C. R., 1996, Endothelium-dependent hyperpolarization of vascular smooth muscle: role for a non-nitric oxide synthase product, Acta. Pharma. Sin. 17:3–7.Google Scholar
  132. Weidelt, T., Boldt, W., and Markward, F., 1997, Acetylcholine-induced K+ currents in smooth muscle cells of intact rat small arteries, J. Physiol. (London) 500:617–630.Google Scholar
  133. Wellman, G. C., Quayle, J. M., and Standen, N. B., 1996, Evidence against the association of the sulphonylurea receptor with endogenous Kir family members other than KATP in coronary vascular smooth muscle, Pflügers Arch. 432:355–357.PubMedCrossRefGoogle Scholar
  134. White, R., and Hiley, C. R., 1997, A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery, Br. J. Pharmacol. 122:1573–1584.PubMedCrossRefGoogle Scholar
  135. White, R., and Hiley, C. R., 1998, Effects of K+ channel openers on relaxations to nitric oxide and endothelium-derived hyperpolarizing factor in rat mesenteric artery, Eur. J. Pharmacol. 357:41–51.PubMedCrossRefGoogle Scholar
  136. Woodley, N., and Barclay, J. K., 1994, Cultured endothelial cells from distinct vacular areas show differential responses to agonists, Can. J. Physiol. Pharmacol. 73:1007–1012.CrossRefGoogle Scholar
  137. Yajima, K., Nishiyama, M., Yamamoto, Y., and Suzuki, H., 1999, Inhibition of endothelium-dependent hyperpolarization by endothelial prostanoids in guinea-pig coronary artery, Br. J. Pharmacol. 126:1–10.PubMedCrossRefGoogle Scholar
  138. Yanagisawa, M., Inoue, A., Takuwa, Y., Mitsui, Y., Kobayashi, M., and Masaki, T., 1989, The human preproendothelin-1 gene: Possible regulation by endothelial phosphoinositide turnover signaling, J. Cardiovasc. Pharmacol. 13 (Suppl. 5):S13–17.PubMedCrossRefGoogle Scholar
  139. Zygmunt, P. M., Edwards, G., Weston, A. H., Larsson, B., and Hoegestatt, E. D., 1997, Involvement of voltage-dependent potassium channels in the EDHF-mediated relaxation of rat hepatic artery, Br. J. Pharmacol. 121:141–149.PubMedCrossRefGoogle Scholar
  140. Zygmunt, P. M., Plane, F., Paulsson, M., Garland, C. J., and Högestatt, E. D., 1998, Interactions between endothelium-derived relaxing factors in the rat hepatic artery: Focus on regulation of EDHF, Br. J. Pharmacol. 124:992–1000.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Christopher R. Triggle
    • 1
  1. 1.Department of Pharmacology and TherapeuticsUniversity of CalgaryCalgaryCanada

Personalised recommendations