Skip to main content

Comparison of roles of three mitogen-activated protein kinases induced by chromium(VI) and cadmium in non-small-cell lung carcinoma cells

  • Chapter
Molecular Mechanisms of Metal Toxicity and Carcinogenesis

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 34))

Abstract

Chromium(VI) [Cr(VI)] and cadmium (Cd) compounds are ubiquitous environmental carcinogens that have been associated with lung tumors and can induce apoptosis in various cell types. Three major mitogen-activation protein kinases (MAPKs), extraceilular signal-regulated kinase (ERK), c-JUN N-terminal kinase (JNK) and p38, have been shown to regulate apoptosis. In this study we explore the abilities of Cr(VI) and Cd to activate JNK, p38 and ERK, including their roles in metal-mediated growth inhibition and apoptosis in a human non-small-cell lung carcinoma cell line, CL3. Exposure to KzCrzO, markedly activated JNK and p38 and moderately activated ERK in a dose-and time-dependent manner. The activated p38 decreased markedly and rapidly and the activated JNK decreased gradually when Cr(VI) was removed from media. At low cytotoxic doses, CdC12decreased ERK activity with concurrently transient activation of JNK, whereas at high cytotoxic doses it persistently activated all three MAPKs. The strength and duration of JNK and p38 activated by Cd were higher and longer than Cr(VI) did when compared at similar cytotoxic doses. In comparable experiment conditions Cd is a much stronger apoptotic inducer than Cr(VI) in CL3 cells. Cross-talk of MAPKs was observed in cells exposed to Cr(VI) but not Cd. Both metals could increase JNK activity through MKK7 but not MKK4. The Cd-activated JNK is involved in apoptosis, but the Cr-activated INK is not. PD98059, an inhibitor of the ERK upstream activators MKK1/2, greatly enhanced the cytotoxicity and apoptosis of cells treated with low Cd doses. SB202190, an inhibitor of p38, decreased the cytotoxicity and apoptosis induced by high Cd doses. Conversely, neither SB202190 nor PD98059 altered Cr(VI)-induced cytotoxicity. The results suggest that JNK and p38 signals cooperatively participate in apoptosis induced by Cd and that the decreased ERK signal by low Cd doses contributes to growth inhibition or apoptosis. Oppositely, activation of ERK, JNK and p38 by Cr(VI) does not affect cytotoxicity. (Mol Cell Biochem 222: 85-95, 2001)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Marshall CJ: Specificity ofreceptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179–185, 1995

    Article  PubMed  CAS  Google Scholar 

  2. Whitmarsh Al, Davis RJ: Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Mcd 74: 589–607,1996

    CAS  Google Scholar 

  3. Ip YT, Davis RJ: Signal transduction by the c-Jun N-terminal kinase (JNK)-from inflammation to development. Cm-r Opin Cell Biol 10: 205–219,1998

    Article  CAS  Google Scholar 

  4. Garrington TP, Johnson GL: Organization and regulation of mitogenactivated protein kinase signaling pathways. Curr Opin Cell Biol 11: 211–218,1999

    Article  PubMed  CAS  Google Scholar 

  5. Nebreda AR, Porras A: p38 MAP kinases: Beyond the stress response. Trends Biochem Sci 25: 257–260, 2000

    Article  PubMed  CAS  Google Scholar 

  6. Hill CS, Treisman R: Transcriptional regulation by extracellular signals: Mechanisms and specificity. Cell 80: 199–211, 1995

    Article  PubMed  CAS  Google Scholar 

  7. IARC: Chromium, nickel, and wedding. In: IARC Monographs on the Evaluation of the Carcinogenic Risks of Chemicals to Humans, vol 19. International Agency for Cancer Research, Lyon, 1990

    Google Scholar 

  8. IARC: Cadmium and cadmium compounds. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Cadmium, Mercury, Beryllium and Exposures in the Glass industry, vol. 58. International Agency for Research on Cancer, Lyon, 1993, pp 119–237

    Google Scholar 

  9. Degraeve N: Carcinogenic, teratogenic and mutagenic effects ofcadmium. Mutat Res 86: 115–135, 1981

    Article  PubMed  CAS  Google Scholar 

  10. Wetterhahn KF, Hamilton JW, Aiyar J, Borges KM, Floyd R: Mechanism of chromium(V1) carcinogenesis: Reactive intermediates and effect on gene expression. Biol Trace Element Res 21: 405–411, 1989

    Article  CAS  Google Scholar 

  11. Shi X, Chiu A, Chen CT, Haiti well B, Castranova V, Vallyathan V: Reduction ofchromium(VI) and its relationship to carcinogenesis. J Toxicol Environ Health B Crit Rev 2: 87–104, 1999

    Article  PubMed  CAS  Google Scholar 

  12. Ochi T, Ohsawa M: Participation of active oxygen species in the induction of chromosomal aberrations by cadmium chloride in cultured Chinese hamster cells. Mutat Res 143: 137–142, 1985

    Article  PubMed  CAS  Google Scholar 

  13. Yang JL, Chao JI, Lin JG: Reactive oxygen species may participate in the mutagenicity and mutational spectrum of cadmium in Chinese hamster ovary-K1 cells. Chem Res Toxicol 9: 1360–1367, 1996

    Article  PubMed  CAS  Google Scholar 

  14. Ilwua YS, Yang JL: Effect of3-aminotriazole on anchorage independence and mutagenicity in cadmium-and lead-treated diploid human fibroblasts. Carcinogenesis 19: 881–888, 1998

    Article  Google Scholar 

  15. Ye J, Wang S, Leonard SS, Sun Y, Butterworth L, Antonini J, Ding M, Rojanasakul Y, Vallyathan V, Castranova V, Shi X: Role of reactive oxygen species and p53 in chromium(VI)-induced apoptosis. J Biol Chem 274: 34974–34980, 1999

    Article  PubMed  CAS  Google Scholar 

  16. Pritchard DE, Singh J, Carlisle DL, Patiemo SR: Cyclosporin A inhibits chromium(VI)-induced apoptosis and mitochondrial cytochrome e release and restores clonogenic survival in CHO cells. Carcinogenesis 21: 2027–2033, 2000

    Article  PubMed  CAS  Google Scholar 

  17. Carlisle DL, Pritchard DE, Singh J. Patierno SR: Chromium(VI) induces p53-dependent apoptosis in diploid human lung and mouse dermal fibroblasts. Mol Carcinogen 28:111–1182000

    Article  CAS  Google Scholar 

  18. Galan A, Garcia-Bermejo ML, Troyano A, Vilabua NE, de Blas E, Kazanietz MG, Aller P: Stimulation ofp38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promenocytic cells. J Biot Chem 275: 11418–11424, 2000

    CAS  Google Scholar 

  19. Robertson JD, Orrenius S: Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit Rev Toxicol 30: 609–627, 2000

    Article  PubMed  CAS  Google Scholar 

  20. Kim G, Yurkow EJ: Chromium induces a persistent activation of mitogen-activated protein kinases by a redox-sensitive mechanism in H4 rat hepatoma cells. Cancer Res 56: 2045 2051, 1996

    Google Scholar 

  21. Samet JM, Graves LM, Quay J, Dailey LA, Devlin RB, Ghio Ai, Wu W, Bromberg PA, Reed W: Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am J Physiol 275: L551–L558, 1998

    PubMed  CAS  Google Scholar 

  22. Wang Z, Templeton DM: Induction ofc fosproto-oncogenc in mesangial cells by cadmium. J Biot Chem 273: 73–79, 1998

    Article  CAS  Google Scholar 

  23. Hung JJ, Cheng TJ, Lai YK, Chang MD: Differential activation of p38 mitogen-activated protein kinase and extracellular signal-regulated protein kinases confers cadmium-induced HSP70 expression in 9L rat brain tumor cells. J Biol Chem 273: 31924–31931, 1998

    Article  PubMed  CAS  Google Scholar 

  24. Matsuoka M, Igisu H: Activation of c-Jun NH,-terminal kinase (INK/ SAPK) in LLC-PK 1 cells by cadmium. Biochem Biophys Res Commun 251: 527–532, 1998

    Article  PubMed  CAS  Google Scholar 

  25. Chuang SM, Liou GY, Yang JL: Activation of INK, p38 and ERK mitogen-activated protein kinases by chromium(VI) is mediated through oxidative stress but does not affect cytotoxicity. Carcinogenesis 21: 1491–1500, 2000

    Article  PubMed  CAS  Google Scholar 

  26. Chuang SM, Wang IC, Yang JL: Roles of JNK, p38 and ERK mitogenactivated protein kinases in the growth inhibition and apoptosis induced by cadmium. Carcinogenesis 21: 1423–1432, 2000

    Article  PubMed  CAS  Google Scholar 

  27. Yang PC, Luh KT, Wu R, Wu CW: Characterization of the mucin differentiation in human lung adenocarcinoma cell lines. Am J Respir Cell Mol Biol 7: 161–171, 1992

    PubMed  CAS  Google Scholar 

  28. Hibi M, Lin A, Smeal T, Minden A, Karin M: Identification of an oncoprotein-and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dcv 7: 2135–2148, 1993

    Article  CAS  Google Scholar 

  29. Kallunki T, Su B, Tsigelny I, Sluss HK, Dérijard B, Moore G, Davis R, Karin M: JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev 8: 2996–3007, 1994

    Article  PubMed  CAS  Google Scholar 

  30. Lin A, MindenA, Martinetto H, Claret FX, Lange-Carter C, Mercurio F. Johnson GL, Karin M: Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 268: 286–290, 1995

    Article  PubMed  CAS  Google Scholar 

  31. Han J, Lee JD, Bibbs L, Ulevitch RJ: A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265: 808–811, 1994

    Article  PubMed  CAS  Google Scholar 

  32. Huang S, Jiang Y, Li Z, Nishida E, Mathias P, Lin S, Ulevitch RJ, Nemerow GR, Han J: Apoptosis signaling pathway in T cells is composed of ICEICed-3 family proteases and MAP kinase kinase 613. Immunity 6: 739–749, 1997

    Article  PubMed  CAS  Google Scholar 

  33. Lawler S, Cuenda A, Goedert M, Cohen P: SKK4, a novel activator of stress-activated protein kinase-1 (SAPK LINK). FEBS Lett 414: 153–158, 1997

    Article  PubMed  CAS  Google Scholar 

  34. Moriguchi T, Toyoshima F, Masuyama N, Hanafusa FI, Gotoh Y, Nishida E: A novel SAPKIJNK kinase, MKK7, stimulated by TNFa and cellular stresses. EMBO J 16: 7045–7053, 1997

    Article  PubMed  CAS  Google Scholar 

  35. Keyse SM: Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curt Opin Cell Biol 12: 186–192, 2000

    Article  CAS  Google Scholar 

  36. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal Mi, Heys JR, Landvatter SW, Strickler JE, McLaughlin MM, Siemens IR, Fisher SM, Livi GP, White JR, Adams JL, Young PR: A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739–746, 1994

    Article  PubMed  CAS  Google Scholar 

  37. Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC: SB 203580 is a specific inhibitor ofa MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 364: 229–233, 1995

    Article  PubMed  CAS  Google Scholar 

  38. Foltz IN, Lee, JC, Young PR, Schrader JW: Hemopoietic growth factors with the exception ofinterleukin-4 activate the p38 mitogen-activated protein kinase pathway. J Biol Chem 272: 3296–3301, 1997

    Article  PubMed  CAS  Google Scholar 

  39. Ludwig S, Hoffmeyer A, Goebeler M, Kilian K, Hafner H, Neufeld B, Han J, Rapp UR: The stress inducer arsenite activates mitogen-activated protein kinases extracellular signal-regulated kinases 1 and 2 via a MAPK kinase 6/p38- dependent pathway. J Biol Chem 273: 1917–1922, 1998

    Article  PubMed  CAS  Google Scholar 

  40. Carter S, Auer KL, Reardon DB, Birrer M, Fisher PB, Valerie K, Schmidt-Ullrich R, Mikkelsen R, Dent P: Inhibition of the mitogen activated protein (MAP) kinase cascade potentiates cell killing by low dose ionizing radiation in A431 human squamous carcinoma cells. Oncogene 16: 2787–2796, 1998

    Article  PubMed  CAS  Google Scholar 

  41. Reardon DB, Contessa JN. Mikkelsen RB, Valerie K, Amir C, Dent P, Schmidt-Ullrich RK: Dominant negative EGFR-0O533 and inhibition of MAPK modify JNK1 activation and enhance radiation toxicity of human mammary carcinoma cells. Oncogene 18: 4756–4766, 1999

    Article  PubMed  CAS  Google Scholar 

  42. Sugiyama M, Wang XW, Costa M: Comparison of DNA lesions and cytotoxicity induced by calcium chromate in human, mouse, and hamster cell lines. Cancer Res 46: 4547–4551, 1986

    PubMed  CAS  Google Scholar 

  43. Xu J, Bubley GJ, Detrick B, Blankenship W, Patierno SR: Chromium (VI) treatment of normal human lung cells results in guanine-specific DNA polymerasc arrest, DNA-DNA crossiinks and S-phase blockade of cell cycle. Carcinogenesis 17: 1511–1517, 1996

    Article  PubMed  CAS  Google Scholar 

  44. Waalkes MP, Diwan BA, Wcghorst CM, Ward JM, Rice JM, Cherian MG, Gayer RA: Further evidence of the tumor-suppressive effects of cadmium in the B6C3F1 mouse liver and lung: Late stage vulnerability of tumors to cadmium and the role of metallothionein..JPharmacol Exp Ther 266: 1656–1663, 1993

    CAS  Google Scholar 

  45. Waalkes MP, Diwan BA: Cadmium-induced inhibition of the growth and metastasis of human sung carcinoma xenografts: Role of apoptosis. Carcinogenesis 20: 65–70, 1999

    Article  PubMed  CAS  Google Scholar 

  46. Liu ZG, Baskaran R, Lea-Chou ET, Wood LO, Chen Y, Karin M, Wang JYJ: Three distinct signalling responses by murine fibroblasts to genotoxic stress. Nature (Lund) 384: 273–276, 1996

    Article  CAS  Google Scholar 

  47. Sanna MG, Duckett CS, Richter BWM, Thompson CB, Ulevitch RJ: Selective activation ofJNK1 is necessary for the anti-apoptotic activity of hILP. Proc Natl Acad Sci USA 95: 6015–6020, 1998

    Article  PubMed  CAS  Google Scholar 

  48. Crawley JB, Rawlinson L, Lali FV, Page TH, Saklatvala J, Foxwell MJ: T cell proliferation in response to interieukins 2 and 7 requires p38 MAP kinase activation. J Biol Chem 272: 15023–15027, 1997

    Article  PubMed  CAS  Google Scholar 

  49. Simon C, Goepfert H, Boyd D: Inhibition of the p38 mitogen-activated protein kinase by SB 203580 blocks PMA-induced M, 92,000 type 1V collagenase secretion andin vitroinvasion. Cancer Res 58: 1135–1139, 1998

    PubMed  CAS  Google Scholar 

  50. Nemoto S, Xiang J, Huang S, Lin A: Induction of apoptosis by SB202I90 through inhibition of p38ß mitogen-activated protein kinase. J Biol Chem 273: 16415–16420, 1998

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chuang, SM., Yang, JL. (2001). Comparison of roles of three mitogen-activated protein kinases induced by chromium(VI) and cadmium in non-small-cell lung carcinoma cells. In: Shi, X., Castranova, V., Vallyathan, V., Perry, W.G. (eds) Molecular Mechanisms of Metal Toxicity and Carcinogenesis. Developments in Molecular and Cellular Biochemistry, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0793-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0793-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5242-6

  • Online ISBN: 978-1-4615-0793-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics