Skip to main content

Wheat Catalase Expressed in Transgenic Rice Plants Can Improve Tolerance Against Low Temperature Injury

  • Chapter
Plant Cold Hardiness

Abstract

We isolated wheat catalase (CAT: EC 1.11.1.6) cDNA and introduced it into rice (Oryza sativa L.). Some of 56 transgenic regenerated rice plants were confirmed to express the wheat catalase by the native PAGE with catalase activity staining. The wheat catalase detected in leaf, root, anther, seed germ and seed endosperm suggested that wheat catalase under 35S CaMV promoter is expressed in these tissues. In the transgenic rice plants, the catalase activities in leaf at 25 °C and at 5 °C were increased from 2 to 5 fold and 4 to 15 fold respectively, compared to that of non-transgenic rice. The transgenic rice CT 2-6-4, which showed the highest catalase activity among the transgenic rice plants indicated an increased resistance to low temperature stress. These results were obtained by comparing the damage in leaves of withering (curling) due to chilling at 5 °C. This chilling treatment resulted in the decrease of catalase activities in both types of plant, but the transgenic plants indicated higher catalase activities retained in the leaves than those of non-transgenic ones. The transgenic CT 2-6-4 also contained lower concentration of hydrogen peroxide in leaves than the control rice plant. During the chilling, the H2O2 concentration of non-transgenic rice increased, but the increase was depressed in the transgenic rice. Therefore, enhanced activities of catalase in genetically engineered rice plants lead to the effective detoxification of H2O2, which improves tolerance against low temperature injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebi, H. E., 1983, Catalase., in: H. U. Bergmeyer, J. Bergmeyer and M. Graßl, eds.,Methods of Enzymatic Analysis, Ed 3 Vol 3. Verlag Chemie GmbH, Weinheim, pp.273-286.

    Google Scholar 

  • Allen, R. D., 1995, Dissection of oxidative stress tolerance using transgenic plants,Plant Physiol. 107:1049-1054.

    PubMed  CAS  Google Scholar 

  • Anderson, M. D., Prasad, T. K. and Stewart, C. R., 1995, Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings,Plant Physiol. 109: 1247-1257.

    PubMed  CAS  Google Scholar 

  • Aono, M., Kubo, A., Saji, H., Natori, T., Tanaka, K. and Kondo, N., 1991, Resistance to active oxygen toxicity of transgenic Nicotiana tabacum that expresses the gene for glutathione reductase from Escherichia coli.Plant Cell Physiol. 32: 691-697.

    CAS  Google Scholar 

  • Aono, M., Kubo, A., Saji, H., Tanaka, K. and Kondo, N., 1993, Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity.Plant Cell Physiol. 34: 129-135.

    CAS  Google Scholar 

  • Asada. K., 1992, Ascorbate peroxidase - a hydrogen peroxide-scavenging enzyme in plants,Physiol. Plant. 85:235-241.

    Article  CAS  Google Scholar 

  • Baisak, R., Rana, D., Acharya, P. B. B. and Kar, M., 1994, Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress,Plant Cell Physiol. 35: 489-495.

    CAS  Google Scholar 

  • Beyer, W. F. and Fridovich, I., 1987, Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions,Anal. Biochem. 161: 559–566.

    Article  PubMed  CAS  Google Scholar 

  • Boldt, R. and Scandalios, J. G., 1997, Influence of UV-light on the expression of the Cat2 and Cat 3 calatase genes in maize,Free Rad.Biol.Med. 23: 505–514.

    Article  PubMed  CAS  Google Scholar 

  • Bowler, C., Slooten, L., Vandenbranden, S., De Rycke, R., Botterman, J., Sybesma, C., Van Montagu, M., Inzé, D., 1991, Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants,EMBO J. 10: 1723–1732.

    PubMed  CAS  Google Scholar 

  • Bowler, C., Van Montagu, M. and Inzé, D., 1992, Superoxide dismutase and stress tolerance.Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 83–116.

    Article  CAS  Google Scholar 

  • Bradford, M. M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Broadbent, P., Creissen, G. P., Kular, B., Wellburn, A. R. and Mullineaux, P. M., 1995, Oxidative stress responses in transgenic tobacco containing altered levels of glutathione reductase activity,Plant J. 8:247–255.

    Article  CAS  Google Scholar 

  • Chen, G. -X. and Asada, K., 1989, Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties,Plant Cell Physiol. 30: 987–998.

    CAS  Google Scholar 

  • Clare, D. A., Rabinowitch, H. D. and Fridovich, I., 1984, Superoxide dismutase and chilling injury in Chlorella ellipsoidea,Arch. Biochem. Biophys. 231:158–163.

    Article  PubMed  CAS  Google Scholar 

  • Creissen, G., Firmin, J., Fryer, M., Kular, B., Leyland, N., Reynolds, H., Pastori, G., Wellburn, F., Baker, N., Wellburn, A. and Mullineaux, P., 1999, Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress,Plant Cell 11: 1277–1291.

    PubMed  CAS  Google Scholar 

  • Foyer, C. H., Lelandais, M. and Kunert, K. J., 1994, Photooxidative stress in plants.Physiol. Plant. 92:696–717.

    Article  CAS  Google Scholar 

  • Fujimura, T., Sakurai, M., Akagi, H., Negishi, T. and Hirose, A., 1985, Regeneration of rice plants from protoplasts,Plant Tissue Culture Lett. 2: 74–75.

    Article  Google Scholar 

  • Hodgson, R. A. J. and Raison, J. K., 1991, Superoxide production by thylakoids during chilling and its implication in the susceptibility of plants to chilling-induced photoinhibition,Planta 183: 222–228.

    Article  CAS  Google Scholar 

  • Hossain, M. A., Nakano, Y. and Asada, K., 1984, Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide.Plant Cell Physiol. 5: 385–395.

    Google Scholar 

  • Kendall, E. J. and McKersie, B. D., 1989, Free radical and freezing injury to cell membranes of winter wheat.Physiol. Plant. 76: 86–94.

    Article  CAS  Google Scholar 

  • Krause, G. H., 1988, Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms.Physiol. Plant. 74: 566–574.

    Article  CAS  Google Scholar 

  • Kyozuka, J., Hayashi, Y. and Shimamoto, K., 1987, High frequency plant regeneration from rice protoplasts by novel nurse culture methods,Mol. Gen. Genet. 206: 408–413.

    Article  CAS  Google Scholar 

  • Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4,Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Landry, L. G., Pell, E. J., 1993, Modification of Rubisco and altered proteolytic activity in O3-stressed hybrid poplar (Populus maximowizii x trichocarpa),Plant Physiol. 101:1355–1362.

    PubMed  CAS  Google Scholar 

  • Leprince, O., Deltour, R., Thorpe, P. C., Atherton, N. M., Hendry, G. A. F., 1990, The role of free radicals and radical processing systems in loss of desiccation tolerance in germinating maize (Zea mays L.),New Phytol. 116: 573–580.

    Article  CAS  Google Scholar 

  • McKersie, B. D., Chen, Y., De Beus, M., Bowley, S. R., Bowler, C., Inzé, D., D'Halluin, K. and Botterman, J., 1993, Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.).Plant Physiol. 103: 1155–1163.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, N. P., Mishra, R. K. and Singhal, G. S., 1993, Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors,Plant Physiol. 102: 903–910.

    PubMed  CAS  Google Scholar 

  • Ni, W. and Trelease, R. N., 1991, Post-transcriptional regulation of catalase isozyme expression in cotton seeds,Plant Cell 3: 737–744.

    PubMed  CAS  Google Scholar 

  • Okuda, T., Matsuda, Y., Yamanaka, A. and Sagisaka, S., 1991, Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment,Plant Physiol. 97: 1265–1267.

    Article  PubMed  CAS  Google Scholar 

  • Omran, R. G., 1980, Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings,Plant Physiol. 65: 407–408.

    Article  PubMed  CAS  Google Scholar 

  • Perl, A, Perl-Treves, R., Galili, S., Aviv, D., Shalgi, E., Malkin, S. and Galun, E., 1993, Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu, Zn superoxide dismutases,Theor. Appl. Genet. 85: 568–576.

    Article  CAS  Google Scholar 

  • Pitcher, L. H., Brennan, E., Hurley, A., Dunsmuir, P., Tepperman, J. M. and Zilinskas, B. A., 1991, Overproduction of petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco,Plant Physiol. 7: 452–455.

    Article  Google Scholar 

  • Polle, A., Chakrabarti, K., Schürmann, W. and Rennenberg, H., 1990, Composition and properties of hydrogen peroxide decomposing systems in extracelluar and total extracts from needles of Norway spruce (Picea abiesL., Karst),Plant Physiol. 94: 312–319.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, T. K., 1997, Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings,Plant Physiol. 114: 1369–1376.

    PubMed  CAS  Google Scholar 

  • Prasad, T. K., Anderson, M. D., Martin, B. A. and Stewart, C. R., 1994, Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide,Plant Cell 6: 65–74.

    PubMed  CAS  Google Scholar 

  • Puntarulo, S., Galleano, M, Sanchez, R. A. and Boveris, A., 1991, Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination,Biochim. Biophys. Acta 1074: 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Reich, P. B. and Amundson, R. G., 1985, Ambient levels of ozone reduce net photosynthesis in tree and crop species,Science 230: 566–570.

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans, C. A., Diplock, A. T., Symons, M. C. R., 1991, Mechanisms of radical production, in: R. H. Burdon and P. H. van Knippenberg, eds,Laboratory Techniques in Biochemistry and Molecular Biology,Vol. 22. Elsevier, Amsterdam, ppl9–50.

    Google Scholar 

  • Saruyama, H. and Matsumura, T., 1999, Cloning and characterization of a cDNA encoding catalase in wheat,DNA Sequence 10: 31–35.

    PubMed  CAS  Google Scholar 

  • Saruyama, H. and Tanida, M., 1995, Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and -tolerant cultivars of rice (Oryza sativa L.),Plant Sci. 109: 105–113.

    Article  CAS  Google Scholar 

  • Scandalios, J. G., 1990, Response of plant antioxidant defense genes to environmental stress, in: J. G. Scandalios and T. R. F. Wright, eds,Advances in Genetics.Vol. 28. Academic Press, San Diego, pp 1–41.

    Google Scholar 

  • Senaratna, T., McKersie, B. D. and Stinson, R. H., 1985, Simulation of dehydration injury to membranes from soybean axes by free radicals,Plant Physiol. 77: 472–474.

    Article  PubMed  CAS  Google Scholar 

  • Sen Gupta, A., Heinen, J. L., Holaday, A. S., Burke, J. J. and Allen, R. D., 1993, Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase.Proc. Natl. Acad. Sci. USA 90: 1629–1633.

    Article  CAS  Google Scholar 

  • Sen Gupta A., Webb, R. P., Holaday, A. S. and Allen, R. D., 1993b, Overexpression of superoxide dismutase protects plants from oxidative stress.Plant Physiol. 103: 1067–1073.

    CAS  Google Scholar 

  • Shikanai, T., Takeda, T., Yamauchi, H., Sano, S., Tomizawa, K. -I., Yokota, A. and Shigeoka, S., 1998, Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts,FEES Lett. 428: 47–51.

    Article  CAS  Google Scholar 

  • Slooten, L., Capiau, K., Van Camp, W., Van Montagu, M., Sybesma, C. and Inzé, D., 1995, Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplasts,Plant Physiol. 107: 737–750.

    PubMed  CAS  Google Scholar 

  • Tada, Y., Sakamoto, M., and Fujimura, T., 1990, Efficient gene introduction into rice by electroplating and analysis of transgenic plants: use of electroplating buffer lacking chloride ions,Theor. Appl. Genet. 80:475–480.

    Article  CAS  Google Scholar 

  • Tanida, M., 1996, Catalase activity of rice seed embryo and its relation to germination rate at a low temperature,Breeding Sci. 46: 23–27.

    CAS  Google Scholar 

  • Tanida, M. and Saruyama, H., 1995, Catalase activity in embryos and its relation to germination ability of rice and wheat seeds, in: K. Noda and D. J. Mares, eds.,Seventh International Symposium on Pre-Harvest Sprouting in Cereals 1995,Center for Academic Societies Japan, Osaka, pp. 357–361.

    Google Scholar 

  • Tepperman, J. M., Dunsmuir, P., 1990, Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity,Plant Mol. Biol. 14:501–511.

    Article  PubMed  CAS  Google Scholar 

  • Torsethaugen, G., Pitcher, L. H., Zilinskas, B. A. and Pell, E. J., 1997, Overproduction of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone.Plant Physiol. 114: 529–537.

    PubMed  CAS  Google Scholar 

  • Trolinder, N. L. and Allen, R. D., 1994, Expression of chloroplast localized Mn SOD in transgenic cotton.J. Cell Biochem. 18A: 91.

    Google Scholar 

  • Wang, J., Zhang, H., and Allen, R. D., 1999, Overexpression of an Arabidopsis peroxisomal ascrobat peroxidase gene in tobacco increases protection against oxidative stress,Plant Cell Physiol. 40: 725–732.

    Article  PubMed  CAS  Google Scholar 

  • Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C, Van Montagu, M., Inzé, D., and Van Camp, W., 1997, Catalase is a sink for H202 and is indispensable for stress defence in C3 plants,EMBO J. 16:4806–4816.

    Article  PubMed  CAS  Google Scholar 

  • Wise, R. R. and Naylor, A. W., 1987a, Chilling-enhanced photooxidation. The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure.Plant Physiol. 83: 272–277.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matsumuraa, T., Tabayashib, N., Kamagata, Y., Souma, C., Saruyama, H. (2002). Wheat Catalase Expressed in Transgenic Rice Plants Can Improve Tolerance Against Low Temperature Injury. In: Li, P.H., Palva, E.T. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0711-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0711-6_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5205-1

  • Online ISBN: 978-1-4615-0711-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics