The Testicular Excurrent Duct System: An Historical Outlook

  • David W. Hamilton


Research on the epididymis has had a long history. Mention of the epididymis can be traced as far back as Aristotle, 2,400 years ago (Orgebin-Crist, 1998). Not much new knowledge accumulated between then and the 17th century when de Graaf (1668), after meticulous dissection, first described the ductuli efferentes and reported that numerous ductuli connected the testis and the single, coiled tubule of the epididymis. Later, von Haller (1765), using a mercury injection technique showed definitively the patency between the epididymis and testis by way of the efferent ducts. In the same century, John Hunter made a retrograde injection of mercury from the human (and other animals) vas deferens into the epididymis and showed that the epididymis was a single, long coiled tubule (Hunter’s specimens can be seen in the Hunterian Museum of the Royal College of Surgeons, London). Hunter also apparently speculated that the epididymis can absorb semen (Allen et. al., 1993), although like other physicians/ scientists of his time, this observation was based more on intuition than on experimental facts.


Sperm Maturation Male Reproductive Tract Efferent Duct Specific Granule Ductus Deferens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, E., J.L. Turk and R. Murley 1993 The Case Books of John Hunter FRS. The Parthenon Publishing Group Inc. New York, 699 pp.Google Scholar
  2. Allen, J.M. and J.J. Slater 1957 A chemical and histochemical study of alkaline Phosphatase and aliesterase in the epididymis of normal and castrate mice. Anat. Rec. 129:255–273.PubMedCrossRefGoogle Scholar
  3. Allen, J.M. and J.J. Slater 1958 A chemical and histochemical study of acid Phosphatase in the epididymis of normal, castrate and hormone replaced castrate mice. Anat. Rec. 130:731–745.PubMedCrossRefGoogle Scholar
  4. Allen, J.M. and J.J. Slater 1959 A chemical and histochemical study of enzymes dephosporylating adenosinephosphate esters in the epididymis of normal, castrate and testosterone proprionate treated castrated mice. Amer. J. Anat. 105:117–139.PubMedCrossRefGoogle Scholar
  5. Amann R.P., H.H. Koefoed-Johnsen and H.J. Levi 1965 Excretion pattern of labeled spermatozoa and the timing of spermatozoa formation and epididymal transit in rabbits injected with thymidine-3H. J. Reprod. Ferti.l 10:169–83CrossRefGoogle Scholar
  6. Barker, L.D.S. and R.P. Amann 1969 Sperm antigens and their localization within the bovine epididymal epithelium. J. Reprod. Fertil. 18:155–156PubMedCrossRefGoogle Scholar
  7. Bedford, J. M. 1965 Changes in fine structure of the rabbit sperm head during passage through the epididymis. J. Anat. 99:891–906.PubMedGoogle Scholar
  8. Benoit M.J. 1926. Recherches anatomiques, cytologiques et histophysiologiques sur les voies excretices du testicule, chez les mammifers. Arch, d’anat. d’histo. et d’embryo. 5:173–412.Google Scholar
  9. Bozas, S.E., L. Kirszbaum, R.L. Sparrow and I.D. Walker 1993 Several vascular complement inhibitors are present on human sperm. Biol.Reprod. 48:503–511PubMedCrossRefGoogle Scholar
  10. Bradfield, J.R.G. 1955 Fibre patterns in animal flagella and cilia. Symposia Soc. Exptl. Biol. 9:306–334.Google Scholar
  11. Braus, H. and E. Redenz 1924 Nebenhoden und Samenfäden. Ant. Anz. 58:121–131Google Scholar
  12. Brooks, D. E. 1976 Changes in the composition of the excurrent duct system of the rat testis during postnatal development. J. Reprod. Fertil. 46:31–8.PubMedCrossRefGoogle Scholar
  13. Brooks, D. E. 1977 The androgenic control of the composition of the rat epididymis determined by efferent duct ligation or castration. J. Reprod. Fertil. 49:383–5.PubMedCrossRefGoogle Scholar
  14. Brooks, D. E. 1978 Activity and androgenic control of enzymes associated with the tricarboxylic acid cycle, lipid oxidation and mitochondrial shuttles in the epididymis and epididymal spermatozoa of the rat. Biochem.J. 174:741–52.PubMedGoogle Scholar
  15. Cantor, CR. 2000 Which “-omics” makes the best diagnostic? GeneLetterl:1.Google Scholar
  16. Cavazos, L.F. 1958 Effects of testosterone proprionate on histochemical reactions of epithelium of rat ductus epididymis. Anat. Rec. 132:209–227.PubMedCrossRefGoogle Scholar
  17. Crabo, B. 1965. Studies on the composition of epididymal content in bulls and boars. Acta Vet. Scand.,6, Suppl. 5:1–94.Google Scholar
  18. Crabo, B. and Gustafsson, B. 1964. Distribution of sodium and potassium and its relation to sperm concentration in the epididymal plasma of the bull. J. Reprod. Fertil. 7:337–345.PubMedCrossRefGoogle Scholar
  19. Cuasnicu, P. S., F. Gonzalez Echeverria, A.D.Piazza, M.S.Cameo and J.A.Blaquier 1984 Antibodies against epididymal glycoproteins block fertilizing ability in rat. J. Reprod. Fertil. 72:467–471.PubMedCrossRefGoogle Scholar
  20. De Graaf, R. 1668. Tractatus de vivorum organis generationi inservientibus. In On the Human Reproductive Organs. Jocelyn, H.D. and Setchell, B.P. (trans.). Blackwell Scientific Publications, Oxford, U.K., pp. 5–86.Google Scholar
  21. Eccleston, E., T. White, J.B Howard and D.W. Hamilton 1994 Characterization of a cell surface glycoprotein associated with maturation of rat spermatozoa. Mol. Reprod. Devel. 37:110–119.PubMedCrossRefGoogle Scholar
  22. Fawcett, D.W. 1954 The study of epithelial cilia and sperm flagella with the electron microscope. Laryngoscope 64:557–567.PubMedCrossRefGoogle Scholar
  23. Fawcett, D.W. 1958 The structure of the mammalian spermatozoon. Intern. Rev. Cytol. 7:195–234.CrossRefGoogle Scholar
  24. Fawcett, D.W. 1962 Sperm tail structure in relation to the mechanism of movement. Spermatozoon Motility pp. 147–169.Google Scholar
  25. Fawcett, D.W. and R.D. Hollenberg 1963 Changes in the acrosome of guinea pig spermatozoa during passage through the epididymis. Z. Zellforsch. 60:276–292.PubMedCrossRefGoogle Scholar
  26. Flickinger, C.J. 1969 Fine structure of the wolffian duct and cytodifferentiation of the epididymis of fetal rats. Z. Zellforsch. 96:344–360.PubMedCrossRefGoogle Scholar
  27. Foster J.A., and G.L. Gerton 1996 Autoantigen 1 of the guinea pig sperm acrosome is the homologue of mouse Tpx-1 and human TPX1 and is a member of the cysteine-rich secretory protein (CRISP) family. Mol. Reprod. Dev. 44:221–229PubMedCrossRefGoogle Scholar
  28. Garrett, S.H., Garrett, J.E. and Douglass, J. 1991. In situ histochemical analysis of region-specific gene expression in the adult rat epididymis. Mol. Reprod. Dev. 30:1–17.PubMedCrossRefGoogle Scholar
  29. Haendler B., J. Kratzschmar, F. Theuring and W.D. Schleuning 1993 Transcripts for cysteine-rich secretory protein-1 (CRISP-1; DE/AEG) and the novel related CRISP-3 are expressed under androgen control in the mouse salivary gland. Endocrinology 133:192–198PubMedCrossRefGoogle Scholar
  30. Hales, B., Hachey, C. and Robaire, B. 1980 The presence and longitudinal distribution of the glutathione S- transferases in rat epididymis and vas deferens. Biochem. J. 189:135– 142.PubMedGoogle Scholar
  31. Hale, G., P.D. Rye, A. Warford, I. Lauder and A. Brito-Babapulle 1993 The glycosylphosphatidylinositol-anchored lymphocyte antigen CDw52 is associated with the epididymal maturation of human spermatozoa. J. Reprod. Immunol. 23:189–205PubMedCrossRefGoogle Scholar
  32. Hamilton, D.W. 1972 The mammalian epididymis. In: Reproductive Biology (H. Balin and S. Glasser, eds.) Excerpta Medica, Amsterdam, pp. 268–337.Google Scholar
  33. Hamilton, D.W. 1975. Structure and function of the epithelium lining the ductuli efferentes, ductus epididymidis, and ductus deferens in the rat. In Handbook of Physiology, Section 7 Endocrinology, Vol. V. The Male Reproductive System. Hamilton, D.W. and Greep, R.O. (eds.). American Physiology Society, Washington D.C. pp. 259–300.Google Scholar
  34. Hamilton, D.W., A.L. Jones and D.W. Fawcett 1969 Cholesterol biosynthesis in the mouse epididymis and ductus deferens: a biochemical and morphological study. Biol. Reprod. 1:167–184.PubMedCrossRefGoogle Scholar
  35. Hamilton, D.W., G.E. Olson and R. Beeuwkes 1976 Epididymal physiology and sperm maturation. In: Sperm Action. Prog. Reprod. Biol., Vol. I (P.O. Hubinont, ed.), Basel:Kargerpp.62–73.Google Scholar
  36. Hamilton, D.W., G.E. Olson and T.G.Cooper 1977 Regional variation in the surface morphology of the epithelium of the rat ductuli efferentes, ductus epididymidis and vas deferens. Anat. Rec. 188: 13–28.PubMedCrossRefGoogle Scholar
  37. Hammar, J.A. 1897 Über secretionserscheinungen in Nebenhoden des Hundes. Zugleich ein Beitrag zur Physiologie des Zellenkerns. Arch. Anat. Entwicklungsgeschichte Suppl. 1–42.Google Scholar
  38. Henry, A. 1900 Etude histologique de la fonction sécrétoire de Pépididyme chez les vertébrés supérieurs. Arch. Anat. Microscop. 3:229–292.Google Scholar
  39. Hermo L, H.I. Adamali, S. Andonian 2000 Immunolocalization of CA II and H+ V-ATPase in epithelial cells of the mouse and rat epididymis. J. Androl. 21:376–39lPubMedGoogle Scholar
  40. Hinton, B. T., B. P. Setchell, and R.W. White 1977 The determination of myo-inositol in micropuncture samples from the testis and epididymis of the rat. J Physiol (Lond) 265:14P–15P.Google Scholar
  41. Hinton, B. T., H. M. Dott, and B.P. Setchell 1979 Measurement of the motility of rat spermatozoa collected by micropuncture from the testis and from different regions along the epididymis. J Reprod Fertil 55:167–72.PubMedCrossRefGoogle Scholar
  42. Hoffer, A.P. and J. Greenberg 1978. The structure of the epididymis, efferent ductules and ductus deferens of the guinea pig: a light microscope study. Anat. Rec. 190:659–678.PubMedCrossRefGoogle Scholar
  43. Holstein, A.F. 1964 Electron microscopic studies on the epididymis in rabbits. Verk. Anat. Ges. 59:53–61.Google Scholar
  44. Holstein, A.F. 1965 Electron microscopic studies on the epididymis of castrated rabbits. Verk. Anat. Ges. 115:381–388.Google Scholar
  45. Holstein, A.F. 1969 Morphologische Studien am Nebenhoden des Menschen. Zwanlose Abhandl. Gebiet. Norm. Pathol. Anat 20:1–91.Google Scholar
  46. Ilio K.Y. and R.A. Hess 1994 Structure and function of the ductuli efferentes: A review. Microsc. Res. Techniq. 29:432–467.CrossRefGoogle Scholar
  47. Jessee, S.J. and S.S. Howards 1976 A survey of sperm, potassium and sodium concentrations in the tubular fluid of the hamster epididymis. Biol. Reprod. 15:631–636.CrossRefGoogle Scholar
  48. Jones, R. and T. D. Glover 1973a The collection and composition of epididymal plasma from the cauda epididymidis of the rabbit. J. Reprod. Fertil. 34:395–403.PubMedCrossRefGoogle Scholar
  49. Jones, R. and T. D. Glover 1973b The effects of castration on the composition of rabbit epididymal plasma. J. Reprod. Fertil. 34:405–14.PubMedCrossRefGoogle Scholar
  50. Kirchhoff, C. 1994 A major messenger ribonucleic acid of the rodent epididymis encodes a small glycosylphosphatidylinositol-anchored lymphocyte surface antigen. Biol. Reprod. 50:896–902PubMedCrossRefGoogle Scholar
  51. Kjeldsen, L., J.B. Cowland, A.H. Johnsen and N. Borregaard 1996 SGP28, a novel matrix glycoprotein in specific granules of human neutrophils with similarity to a human testis-specific gene product and a rodent sperm-coating glycoprotein. FEBS Lett. 380:246–250PubMedCrossRefGoogle Scholar
  52. Ladman, A.J. and W.C. Young 1958 An electron microscopic study of the ductuli efferentes and rete testis of the guinea pig. J. Biophys. Biochem. Cytol. 4:219–226.PubMedCrossRefGoogle Scholar
  53. Levine, N. and D. J. Marsh 1971 Micropuncture studies of the electrochemical aspects of fluid and electrolyte transport in individual seminiferous tubules, the epididymis and the vas deferens in rats. J Physiol (Lond) 213: 557–70.Google Scholar
  54. MacMillan, E.W. and R.G. Harrison 1955 The rate of passage of radiopaque medium along the ductus epididymidis of the rat. Proc. Soc. Study Fertility 7:35–40.Google Scholar
  55. Malm, J., O. Sorensen, T. Persson, M. Frohm-Nilsson, B. Johansson, A. Bjartell, H. Lilja, M. Stahle- Backdahl, N. Borregaard and A. Egesten 2000 The human cationic antimicrobial protein (hCAP-18) is expressed in the epithelium of human epididymis, is present in seminal plasma at high concentrations, and is attached to spermatozoa. Infect. Immun. 68:4297–4302PubMedCrossRefGoogle Scholar
  56. Maneely, R.B. 1955. The distribution of Polysaccharide complexes and of alkaline glycerophosphatase in the epididymis of the rat. Acta Anat. 24:314–329.PubMedCrossRefGoogle Scholar
  57. Maneely, R.B. 1958. The effect of bilateral gonadectomy on the histology and histochemistry of the surviving epididymis in rats. Acta Anat. 32:361–380.PubMedCrossRefGoogle Scholar
  58. Markey, C.M., D.B. Rudolph, J.C. Labus and B.T. Hinton 1998 Oxidative stress differentially regulates the expression of y-glutamyltranspeptidase mRNAs in the initial segment of the rat epididymis. J. Androl.19:92–99PubMedGoogle Scholar
  59. Martan, J. 1969 Epididymal histochemistry and physiology. Biol. Reprod. Suppl. 1:134–154.CrossRefGoogle Scholar
  60. Mizuki N, and M. Kasahara 1992 Mouse submandibular glands express an androgen-regulated transcript encoding an acidic epididymal glycoprotein-like molecule. Mol. Cell. Endocrinol. 89:25–32PubMedCrossRefGoogle Scholar
  61. Moore, C.R. 1927 A qualitative indicator for the testis hormone. Proc. Soc. Exp. Biol. and Med. 24:847– 848.Google Scholar
  62. Moore, C.R. 1928 On the properties of the gonads as controllers of somatic and psychical characteristics. X. Spermatozoon activity and the testis hormone. Jour. Exp. Zool. 50:455–494.CrossRefGoogle Scholar
  63. Moore, C.R. and L.C. McGee 1928 On the effects of injecting lipoid extracts of bull testes into castrated guinea pig. Am. Jour. Physiol. 87:436–446.Google Scholar
  64. Moore, A., K. Ensrud, T. White, C. Frethem and D.W. Hamilton 1994 Rat epididymis-specific sperm maturation antigens. I. Evidence that the 26 kD 4E9 antigen found on rat cauda epididymal sperm is derived from a protein secreted by the epididymis. Mol. Reprod. Dev. 37:181–194.PubMedCrossRefGoogle Scholar
  65. Myers-Ward, C.F. 1897 Preliminary note of the structure and function of the epididymis and vas deferens in the higher mammalia. J. Anat. 135–140.Google Scholar
  66. Nicander, L. 1957a Studies on the regional histology and cytochemistry of the ductus epididymis in rabbits. Acta Morphol. Neer-Scand. 1:99–118.Google Scholar
  67. Nicander, L. 1957b Studies on the regional histology and cytochemistry of the ductus epididymis in stallions, rams and bulls. Acta Morphol. Neer-Scand. 1:337–362.Google Scholar
  68. Nicander, L. 1965 An electron microscopical study of absorbing cells in the posterior caput epididymis of rabbits. Z. Zeilforsch. 66:829–847.CrossRefGoogle Scholar
  69. Neumark, H. and H. Schindler 1967 Amino acids, amines and peptides of ram epididymal semen. J. Reprod. Fertil. 14:469–471PubMedCrossRefGoogle Scholar
  70. Neutra, M. and C. P. Leblond 1966 Radioautographic comparison of the uptake of galactose-3H and glucose-3H in the golgi region of various cells secreting glycoproteins or mucopolysaccharides. J. Cell Biol. 30:137–50.PubMedCrossRefGoogle Scholar
  71. Orgebin-Crist, M.C. 1998 The epididymis across 24 centuries. J. Reprod. Fertil. Suppl. 53:285–292.Google Scholar
  72. Orgebin-Crist, M.C. 1965 Passage of spermatozoa labelled with thymidine-3H through the ductus epididymidis of the rabbit. J. Reprod. Fertil. 10: 241–51.PubMedCrossRefGoogle Scholar
  73. Ortavant, R. 1954 Determination de la vitesse de transfert des spermatozoids dans l’épididyme de bélier a l’aide de32P. Compt. Rend. Soc. Biol. 148:804–806.Google Scholar
  74. Redenz, E. 1924 Versuch einer biologischen Morphologie des Nebenhodens. Arch. Mikro. Anat. und Ent.- mech. 103:593–628.Google Scholar
  75. Redenz, E. 1925a Der Nebenhoden als morphologisches Problem. II. Die Bedeutung der Elektrolytenresporption für die Beweglichkeit der Spermien. Verh. Anat. Gesellsch. 34:180–189.Google Scholar
  76. Redenz, E. 1925b Versuch einer biologischen Morphologie des Nebenhoden. II. Die Bedeutung Elektrolytarmer Losungen for die Bewegung der Spermien. Arch. Entw. Mech. Organ. 106:290–302.CrossRefGoogle Scholar
  77. Redenz, E. 1926 Nebenhoden und Spermienbewegung. Würzburger Abhanglungen aus dem Gesamtgebiet der Medizin. Neue Folge. 4:107–150.Google Scholar
  78. Reid, B.L. and K.W. Cleland 1958 The structure and function of the epididymis. Quart. J. Micro. Sci. 99:295–314.Google Scholar
  79. Schieiden, M. 1838 Contributions to phytogenesis.Google Scholar
  80. Schwann, T. 1839 Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachstume der Tiere und Pflanzen.Google Scholar
  81. Silber, S. J. 1989 Apparent fertility of human spermatozoa from the caput epididymidis. J. Androl. 10:263–269.PubMedGoogle Scholar
  82. Sylvester, S.R., C. Morales, R. Oko and M.D. Griswold 1991 Localization of sulfated glycoprotein-2 (clusterin) on spermatozoa and in the reproductive tract of the male rat. Biol. Reprod. 45:195–207PubMedCrossRefGoogle Scholar
  83. Tournade, A. 1913 Différence de motilité des spermatozoids prélevés dans diverse segments de l’épididyme. Compte. Rend. Soc. Biol. 74:738–739.Google Scholar
  84. van der Stricht, O. 1893 La signification des cellules épithéliales de l’épididyme de Lacerta vivipara. C.R. Soc. Biol. 45:p.799Google Scholar
  85. von Haller, A. 1765. Elementa Physiologiae Corporis Humani. Partes Genitales Masculae. Vol. 7, Lib. 27. Haak, Lugduni Batavorum, p. 410.Google Scholar
  86. Veri, J.P., Hermo, L., and Robaire, B. 1993. Immunocytochemical localization of the Yf subunit of glutathione S-transferase P shows regional variation in the staining of epithelial cells of the testis, efferent ducts and epididymis of the male rat. J. Androl. 14:23–44.PubMedGoogle Scholar
  87. Wislocki, G.B. 1948 Seasonal changes in the testes, epididymides and seminal vesicles of deer investigated by histochemical methods. Endocrinol. 44:167–189.CrossRefGoogle Scholar
  88. Xu, W. K. Ensrud and D.W. Hamilton 1997 The 26 kD protein recognized on rat cauda epididymal sperm by monoclonal antibody 4E9 has internal peptide sequence identity with the secreted form of rat epididymal protein E. Mol. Reprod. Dev. 46:377–382.PubMedCrossRefGoogle Scholar
  89. Young, W.C. 1929a A study of the function of the epididymis I. Is the attainment of full spermatozoon motility attributable to some specific actions of the epididymal secretion? J. Morphol. 47:479–495CrossRefGoogle Scholar
  90. Young, W.C. 1929b A study of the function of the epididymis II The importance of an aging process in sperm for the length of the period during which fertilizing capacity is retained by sperm isolated in the epididymis of the guinea pig. J. Morphol. 48:475–491CrossRefGoogle Scholar
  91. Young, W.C. 1931 A study of the function of the epididymis III Functional changes undergone by spermatozoa during their passage through the epididymis and vas deferens in the guinea pig. J. Exper. Biol. 8:151–162Google Scholar
  92. Young, W.C. 1933 Die Resorption in den Ductuli efferentes der Maus und ihre Bedeutung im Hoden-Nebenhoden System. Z. Zellforsch. 17:729–759.CrossRefGoogle Scholar
  93. Young, W.C. 1961 Sex and Internal Secretions, Third Edition.. The Williams and Wilkins Company, Baltimore.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • David W. Hamilton
    • 1
  1. 1.Department of Genetics, Cell Biology & DevelopmentUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations