Skip to main content

An Integrated Plasma Equipment — Feature Evolution Model for Thin Film Etching Applications

  • Chapter
Gaseous Dielectrics IX

Abstract

Plasma assisted etching is a vital technology for microelectronics manufacturing. The quest for higher speed, denser circuitry and enhanced functionality in integrated circuits is pushing all microelectronics manufacturing processes including plasma etching to their limits. Transition towards new materials (e.g. Cu, low-k dielectrics), control of plasma damage mechanisms (e.g. charging) and new environmentally friendly etching chemistries (e.g. C4F6) are introducing additional challenges. It has therefore become imperative to thoroughly understand the plasma etching processes and the behavior of plasma equipment. Computational modeling is one tool that, in conjunction with experiments, can be invaluable in this quest. We have recently developed integrated plasma equipment - feature evolution models for investigating the physics and technology of plasma assisted etching. These models along with their application to c-C4F8 based dielectric etching are the focus of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. P. L. G. Ventzek, M. Grapperhaus, and M. J. Kushner, Investigation of electron source and ion flux uniformity in high plasma density inductively coupled plasma tools using two-dimensional modeling, J. Vac. Sci. Technoi B 12, 3118–3137 (1994).

    Article  Google Scholar 

  2. X. Xu, S. Rauf, and M. J. Kushner, Plasma abatement of perfluorocompounds in inductively coupled plasma reactors, J. Vac. Sci. Technoi A 18, 213–231 (2000).

    Article  Google Scholar 

  3. S. Rauf, Effect of bias voltage on ion energy distribution, J. Appl. Phys. 87,7647–7651 (2000).

    Article  Google Scholar 

  4. R. J. Hoekstra, M. J. Grapperhaus, and M. J. Kushner, An integrated plasma equipment model for polysilicon etch profiles in an inductively coupled plasma reactor with subwafer and super wafer topography, J. Vac. Sci. Technoi. A 15, 1913–1921 (1997).

    Article  Google Scholar 

  5. C. Winstead and V. McKoy, to be published.

    Google Scholar 

  6. W. L. Morgan, C. Winstead, and V. McKoy, to be published.

    Google Scholar 

  7. K. Waters, Infrared diode laser absorption spectroscopy measurement of gas phase radicals in c-C4F8 discharges for plasma model validation, MS Thesis, University of New Mexico (2000).

    Google Scholar 

  8. A. Chutjian and S. H. Alajajian, Measurements of electron attachment lineshapes and cross sections at ultra-low electron energies for CF2C12, c-C4F6, c-C4F8 and c-C7F14, J. Phys. B 20, 839–846 (1987).

    Article  Google Scholar 

  9. I. Sauers, L. G. Christophorou, and J. G. Carter, Electron attachment to perfluorocarbon compounds. III. Fragmentation of aliphatic perfluorocarbons of interest to gaseous dielectrics, J. Chem. Phys. 71, 3016–3024 (1979).

    Article  Google Scholar 

  10. C. Q. Jiao, A. Garscadden, and P. D. Haaland, to be published.

    Google Scholar 

  11. C. Q. Jiao, A. Garscadden, and P. D. Haaland, Partial ionization cross-sections of C2F6, Chem. Phys. Lett.310, 52–56 (1999).

    Article  Google Scholar 

  12. S. Rauf and P. L. G. Ventzek, Model for an inductively coupled Ar/c-C4F8 plasma discharge, submitted to J. Vac, Sci. Technoi. A.

    Google Scholar 

  13. K. Tachibana, Excitation of the ls5, ls4, IS3, and ls2 levels of argon by low-energy electrons, Phys. Rev. A 34,1007–1015(1986).

    Article  Google Scholar 

  14. D. Rapp and P. Englander-Golden, J. Chem. Phys. 43,1464 (1965).

    Article  Google Scholar 

  15. R. H. McFarland and J. D. Kinney, Phys. Rev. 137, A1058 (1965).

    Article  Google Scholar 

  16. A. A. Christodoulides, L. G. Christophorou, R. Y. Pai, and C. M. Tung, Electron attachment to perfluorocarbon compounds. I. c-C4F6, 2-C4F6, 1,3-C4F6, c-C4F8 and 2-C4F8, J. Chem. Phys. 70, 1156–1168 (1979).

    Article  Google Scholar 

  17. C. Q. Jiao, A. Garscadden and P. D. Haaland, Ion chemistry in octafluorocyclobutane, c-C4F8, Chem. Phys. Lett. 297, 121–126(1998).

    Article  Google Scholar 

  18. V. Tarnovsky and K. Becker, Absolute partial cross sections for the parent ionization of the CFX (x=l-3)free radicals by electron impact, J. Chem. Phys. 98, 7868–7874 (1993).

    Article  Google Scholar 

  19. V. Tarnovsky, P. Kurunczi, D. Rogozhnikov and K. Becker, Absolute cross sections for the dissociative electron impact ionization of the CFX (x=l-3) free radicals, Int. J. Mass Spectrom. Ion Proc. 128, 181–194 (1993).

    Article  Google Scholar 

  20. M. Hayashi and T. Nimura, Calculation of electron swarm parameters in fluorine, J. Appl. Phys. 54, 4879–4882 (1983).

    Article  Google Scholar 

  21. G. A. Hebner and P. A. Miller, Electron and negative ion densities in C2F6 and CHF3 containing inductively coupled discharges, J. Appl. Phys. 87,7660–7666 (2000).

    Article  Google Scholar 

  22. P. A. Miller, G. A. Hebner, K. E. Greenberg, P. D. Pochan, and B. P. Aragon, An inductively coupled plasma source for the gaseous electronics conference rf reference cell, J. Res. Natl. Inst. Stand. Technoi 100,427–439(1995).

    Article  Google Scholar 

  23. G. A. Hebner and P. A. Miller, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rauf, S., Zhang, D., Ventzek, P.L.G. (2001). An Integrated Plasma Equipment — Feature Evolution Model for Thin Film Etching Applications. In: Christophorou, L.G., Olthoff, J.K. (eds) Gaseous Dielectrics IX. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0583-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0583-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5143-6

  • Online ISBN: 978-1-4615-0583-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics