Skip to main content
  • 314 Accesses

Abstract

Design and planning problems in environmental engineering are often represented as nonlinear optimization models. Economic or social welfare objectives are, for example, nonlinear functions of resources, products, or project activities. Optimization models of environmental systems frequently incorporate equations describing the underlying flow, mass and energy transport processes. The response of these systems is generally described by nonlinear partial or ordinary differential equations. The numerical approximation of these equations using finite difference or finite element methods, for example, produces systems of nonlinear algebraic constraint equations. The nonlinear equality constraints in optimization models, as we have examined in Example Problem 2.13, generate noncon-vex programming problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abadie, J. and J. Carpentier. “Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints,” in Optimization, (R. Fletcher, Ed.), Academic Press, New York, 1969.

    Google Scholar 

  • Avriel, M. Nonlinear Programming Analysis and Methods, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976.

    Google Scholar 

  • Bazarra, M. S. and C. M. Shetty. Nonlinear Programming Theory and Algorithms, John Wiley & Sons, New York, 1979.

    Google Scholar 

  • Bellman, R. Dynamic Programming, Princeton University Press, Princeton, New Jersey, 1957.

    Google Scholar 

  • Bellman, R. E. and R. E. Kalaba. Quasilinearization and Invariant Imbedding, Elsevier, New York, 1963.

    Google Scholar 

  • Box, M. J. “A New Method of Constrained Opt. and a Comparison with Other Methods,” Computer J., 8:42–52, 1965.

    Article  Google Scholar 

  • Brill, E. Downey, Jr., J. C. Liebman, and C. S. Revelle. “Equity Measures for Exploring Water Quality Management Alternatives,” Water Resources Research, 12(5):845–851, 1976.

    Article  Google Scholar 

  • Charnes, A. and W. W. Cooper. Management Models and Industrial Applications of Linear Programming, Vol. 1, John Wiley & Sons, New York, 1963.

    Google Scholar 

  • Cohon, J. L. and D. H. Marks. “A Review and Evaluation of Multiobjective Programming Techniques,” Water Resources Research, 11(2):208–220, 1975.

    Article  Google Scholar 

  • Essaid, H.I. (1990). A Multilayered Sharp Interface Model of Coupled Freshwater and Saltwater Flow in Coastal Systems: Model Development and Application, Water Resources Research, 26:1431–1454, 1990.

    Article  Google Scholar 

  • Finney, B. A., Samsuhadi, R. Willis. “Quasi-Three-Dimensional Optimization Model of Jakarta Basin,” J. Water Res. Plan, and Mgt, ASCE, 118(1):18–31, 1992.

    Article  Google Scholar 

  • Frank, M. and P. Wolfe, “An Algorithm for Quadratic Programming,” Naval Res. Log. Quart., 3:95–110, 1956.

    Article  Google Scholar 

  • Goicoechea, A., Hansen, D. R. and L. Duckstein. Multiobjective Decision Analysis, John Wiley & Sons, New York, 1982.

    Google Scholar 

  • Haith, D. A. Environmental Systems Optimization, John Wiley & Sons, New York, 1982.

    Google Scholar 

  • Hadley, G. Nonlinear and Dynamic Programming, Addison Wesley Publishing Company, Inc. Reading, Massachusetts, 1964.

    Google Scholar 

  • Hexem, R. W. and E. O. Heady, Water Production Functions for Irrigated Agriculture, The Iowa State University Press, Ames, Iowa, 1978.

    Google Scholar 

  • Himmelblau, D. M. Applied Nonlinear Programming, McGraw-Hill, New York, 1972.

    Google Scholar 

  • Konikow, L. F. and J. D. Bredehoeft. “Computer Model of Two-Dimensional Solute Transport and Dispersion in Ground Water,” Techniques of Water-Resources Investigations, U. S. Geological Survey, Chapter C2, Book 7, Washington, D.C., 1984.

    Google Scholar 

  • Kuhn, H. W. and A. W. Tucker. “Nonlinear Programming,” in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, J. Neyman (editor), University of California Press, Berkeley, California, pp. 481–492, 1951.

    Google Scholar 

  • Liebman, J. C. and W. R. Lynn. “The Opt. Allocation of Stream Dissolved Oxygen,” Water Res. Research, 2(3):581–591, 1966.

    Article  CAS  Google Scholar 

  • Liu, Changming and D. Wei. “Calculation and Analysis of Water Allocation Effects Upon Agricultural Production,” J. of Natural Resources, 2(1):9–19, 1987.

    Google Scholar 

  • Liu, Changming. Briefing Yucheng Water Resources, Yucheng, China, 1987.

    Google Scholar 

  • Loo, Huan Yen and Changming Liu. Briefing Groundwater Modeling in Yucheng County, Chinese Academy of Sciences, Beijing, China, 1987.

    Google Scholar 

  • Loucks, D. P., Stedinger, J. R. and D. A. Haith. Water Resource Systems Planning and Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

    Google Scholar 

  • Luenberger, D. G. Introduction to Linear and Nonlinear Programming, Addison-Wesley, Reading, MA., 1973.

    Google Scholar 

  • Mangasarian, O. L. Nonlinear Programming, McGraw-Hill, New York, 1969.

    Google Scholar 

  • Marquardt, D. W. “An Algorithm for Least Squares Estimation of Non-Linear Parameters,” J. SIAM, 11:431–444, 1963.

    Google Scholar 

  • McCormick, G. P. “Anti Zig-Zagging by Bending,” Management Science, 15:315–320,1969.

    Article  Google Scholar 

  • Murtagh, B. A. and M. A. Saunders. “Large Scale Linearly Constrained Optimization,” Math. Prog., 14:41–72, 1978.

    Article  Google Scholar 

  • Murtagh, B. A. and M. A. Saunders. “A Projected Lagrangian Algorithm and Its Implementation for Sparse Nonlinear Constraints,” Math. Prog. Study 16, Algorithms for Constrained Minimization of Smooth Nonlinear Functions 84–117, 1982.

    Article  Google Scholar 

  • Murtagh, B. A. and M. A. Saunders. MINOS 5.1 User’s Guide, Technical Report SOL 83–20R, Department of Operations Research, Stanford University, Stanford, California, 1987.

    Google Scholar 

  • Nemhauser, G. L. Introduction to Dynamic Programming, John Wiley & Sons, New York, 1966.

    Google Scholar 

  • Reklaitis, G. V., Ravindran, A. and K. M. Ragsdell. Engineering Optimization: Methods and Applications, John Wiley & Sons, New York, 1983.

    Google Scholar 

  • Revelle, C. S., Loucks, D. P. and W. R. Lynn. “Linear Programming Applied to Water Quality Management,” Water Resources Research, 4(1):1–9, 1968.

    Article  Google Scholar 

  • Rosenbrock, H. H. “An Automated Method for Finding the Greatest or Least Value of a Function,” Computer J., 3(3):175–184, 1960.

    Article  Google Scholar 

  • Samsuhadi. Simulation and Optimization Models for the Jakarta Ground-water Basin, Master’s Thesis. Department of Environmental Resources Engineering, Humboldt State University, Areata, California, 1990.

    Google Scholar 

  • Simmons, Donald M. Nonlinear Programming for Operations Research, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975.

    Google Scholar 

  • Smeers, Y. “Generalized Reduced Gradient Method as an Extension of Feasible Direction Methods,” J. Opt. Theory Applications, 22:209–226, 1977.

    Article  Google Scholar 

  • Smith, E. T. and A. R. Morris. “Systems Analysis for Optimal Water Quality Management,” J. Wat. Pollution Control Federation, 41:1635–1646, 1969.

    Google Scholar 

  • Streeter, H. W. and E. P. Phelps. “A Study of the Pollution and Natural Purification of the Ohio River,” U. S. Public Health Service, Publication Health Bulletin 146, February, 1925.

    Google Scholar 

  • Tui, Z. “Concave Programming under Linear Constraints,” Soviet Mathematics, 5:1437–1440, 1964.

    Google Scholar 

  • Willis, R. “A Planning Model for the Management of Groundwater Quality,” Water Resources Research, 15(6):1305–1312, 1979.

    Article  Google Scholar 

  • Willis, R. and W. W-G. Yeh. Groundwater Systems Planning and Management, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987.

    Google Scholar 

  • Willis, R. and B. A. Finney. “Planning Model for Opt. Control of Saltwater Intrusion,” J. Water Res. Plan. and Mgt, ASCE, 114(2):163–178, 1988.

    Article  Google Scholar 

  • Willis, R., Finney, B. A. and D. Zhang. “Water Res. Management in North China Plain,” J. Water Res. Plan. and Mgt., ASCE, 115(5):598–615, 1989.

    Article  Google Scholar 

  • Wolfe, P., “Methods of Nonlinear Programming,” in Recent Advances in Mathematical Programming, R. L. Graves and P. Wolfe (Editors), McGraw-Hill Inc., New York, 1963.

    Google Scholar 

  • Zadeh, L. A. “Optimality and Non-Scalar-Value Performance Criteria,” IEEE Trans. Automat. Contr., AC-8(1):59–60, 1963.

    Article  Google Scholar 

  • Zangwill, W. L. “Minimizing a Function Without Calculating Derivatives,” Computer J., 10, pp. 293–296, 1967.

    Article  Google Scholar 

  • Zangwill, W. L. Nonlinear Programming, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1969.

    Google Scholar 

  • Zangwill, W. L. “The Convex Simplex Method,” Management Science, 14(3):221–238, 1967.

    Article  Google Scholar 

  • Zhang, Yongzhong, “Development and Calibration of Boundary Integral Equation Model of Yucheng County,” Final Report, Chinese Academy of Sciences (in Chinese), Beijing, China, 1987.

    Google Scholar 

  • Zhang, Daoshuai, “Application of Finite Element Model to Yucheng County,” Final Report, Chinese Academy of Sciences (in Chinese), Beijing, China, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Willis, R., Finney, B.A. (2004). Nonlinear Optimization. In: Environmental Systems Engineering and Economics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0479-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0479-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5097-2

  • Online ISBN: 978-1-4615-0479-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics