Skip to main content

Sodium Overload and Mitochondrial Damage in Ischemic/Reperfused Heart

  • Chapter
Myocardial Ischemia and Preconditioning

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 6))

  • 101 Accesses

Summary

Possible mechanisms by which cytosolic sodium overload may lead to the mitochondrial damage followed by ischemia/reperfusion injury were examined in perfused rat hearts. Massive accumulation of myocardial Na+ occurred, but no Ca2+ accumulation was detected during ischemia. This suggests that cytosolic sodium overload in cardiac cells may initiate ionic disturbance in the ischemia/reperfusion injury. Treatment of the pre-ischemic heart with 0.3μM tetrodotoxin, 3μM ethylisopropyl amiloride, 3μM diltiazem, or 100μM propranolol enhanced post-ischemic contractile recovery, which was associated with suppression of cellular Na+ accumulation, restoration of tissue high-energy phosphates, and preservation of the mitochondrial ability to produce ATP in the ischemic/reperfused heart. The improvement of post-ischemic contractile recovery by these agents was closely correlated with the mitochondrial ability to produce ATP at the end of ischemia. Na+ induced impairments of the mitochondrial membrane function such as attenuation of oxidative phosphorylation, swelling, depolarization of the membrane potential, release of cytochrome c in the isolated mitochondria in vitro. The Na+-induced mitochondrial impairments were not canceled under in vitro conditions by the presence of the above agents. The release of cytochrome c from the ischemic heart was observed, which was blocked by treatment of the pre-ischemic heart with these agents. The results suggest that sodium overload may induce deterioration of the mitochondrial function during ischemia and that this mitochondrial damage may determine postischemic contractile dysfunction in perfused rat hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pierce GN, Czubryt MP. 1995. The contribution of ionic imbalance to ischemia/reperfusion-induced injury. J Mol Cell Cardiol 27:53–63.

    Article  PubMed  CAS  Google Scholar 

  2. Pike MM, Luo CS, Clark MD, Kirk KA, Kitakaze M, Madden MC, Cragoe EJ Jr, Pohost GM. 1993. NMR measurements of Na+ and cellular energy in ischemic rat heart: role of Na+-H+ exchange. Am J Physiol 265:H2017–H2026.

    PubMed  CAS  Google Scholar 

  3. Hendrix M, Mubagwa K, Verdonck F, Overloop K, Van Heck P, Vanstapel F, Van Lommel A, Verbeken E, Lauweryns J, Flameng W. 1994. New Na+-H+ exchange inhibitor HOE 694 improves postischemic function and high-energy phosphate resynthesis and reduces Ca2+ overload in isolated perfused rabbit heart. Circulation 89:2787–2798.

    Article  Google Scholar 

  4. Takeo S, Tanonaka K, Hayashi M, Yamamoto K, Liu JX, Kamiyama T, Yamaguchi N, Miura A, Natsukawa T. 1995. A possible involvement of sodium channel blockade of class-I-type antiarrhythmic agents in postischemic contractile recovery of isolated perfused hearts. J Pharmacol Exp Ther 273:1403–1409.

    PubMed  CAS  Google Scholar 

  5. Karmazyn M. 1991. Amiloride enhances postischemic ventricular recovery: possible role of Na+/H+ exchange. Am J Physiol 255:H608–H615.

    Google Scholar 

  6. Rubin Y, Navon G. 1993. Inhibition of sodium influx and improved preservation of rat hearts during hypothermic ischemia by furosemide and bumetanide: a 23Na- and 31P-NMR study. J Mol Cell Cardiol 25:1403–1411.

    Article  PubMed  CAS  Google Scholar 

  7. Van Emous JG, Nederhoff MGJ, Ruigrok TJC, Van Echteid CJA. 1997. The role of the Na+ channel in the accumulation of intracellular Na+ during myocardial ischemia: consequences for post-ischemic recovery. J Mol Cell Cardiol 29:85–96.

    Article  PubMed  Google Scholar 

  8. Kawada T, Yoshida Y, Sakurai H, Imai S. 1992. Myocardial Na+ during ischemia and accumulation of Ca2+ after reperfusion: a study with monensin and dichlorobenzamil. Jpn J Pharmacol 59:191–200.

    Article  PubMed  CAS  Google Scholar 

  9. Piper HM, Siegmund B, Ladilov Y, Schluter KD. 1993. Calcium and sodium control in hypoxic-reoxygenated cardiomyocytes. Basic Res Cardiol 88:471–482.

    Article  PubMed  CAS  Google Scholar 

  10. Regits V, Paulson DJ, Honach RJ, Little SE, Shaper W, Shung AG. 1984. Mitochondrial damage during myocardial ischemia. Basic Res Cardiol 79:207–217.

    Article  Google Scholar 

  11. Piper HM, Noll T, Siegmund B. 1994. Mitochondrial function in oxygen depleted and reoxygenated myocardial cell. Cardiovasc Res 28:1–15.

    Article  PubMed  CAS  Google Scholar 

  12. Suleiman M, Halestrap AP, Griffiths EJ. 2001. Mitochondria: a target for myocardial protection. Pharmacol Ther 89:29–46.

    Article  PubMed  CAS  Google Scholar 

  13. Eng S, Maddaford TG, Kardami E, Pierce GN. 1998. Protection against myocardial ischemic/reper-fusion injury by inhibitors of two separate pathways of Na+ entry. J Mol Cell Cardiol 30:829–835.

    Article  PubMed  CAS  Google Scholar 

  14. Bugge E, Munch-Ellingsen J, Ytrehus K. 1996. Reduced infarct size in the rabbit heart in vivo by ethyhsopropyl-amiloride. A role for Na+/K+ exchange. Basic Res Cardiol 91:203–209.

    Article  PubMed  CAS  Google Scholar 

  15. Tanonaka K, Takasaki A, Kajiwara H, Takeo S. 2000. Contribution of sodium channel and sodium/hydrogen exchanger to sodium accumulation in the ischemic myocardium. Gen Pharmacol 34:167–174.

    Article  PubMed  CAS  Google Scholar 

  16. Weishaar RE, Bing RJ. 1980. The beneficial effect of a calcium channel blocker, diltiazem, on the ischemic-reperfused heart. J Mol Cell Cardiol 12:993–1009.

    Article  PubMed  CAS  Google Scholar 

  17. Takeo S, Tanonaka K, Miyake K, Fukumoto T. 1988. Role of ATP metabolites in induction of incomplete recovery of cardiac contractile force after hypoxia. Can J Cardiol 4:193–200.

    PubMed  CAS  Google Scholar 

  18. Fujioka H, Yoshihara S, Tanaka T, Fukumoto T, Kuroiwa A, Tanonaka K, Hayashi M, Takeo S. 1991. Enhancement of post-hypoxic contractile and metabolic recovery of perfused rat hearts by dl-propranolol: possible involvement of non-beta-receptor mediated activity. J Mol Cell Cardiol 23:949–962.

    Article  PubMed  CAS  Google Scholar 

  19. Liu XK, Ebgelman RM, Agrawal HR, Das DK. 1991. Preservation of membrane phospholipids by propranolol, pindolol, and metoprolol: a novel mechanism of action of beta-blockers. J Mol Cell Cardiol 23:1091–1100.

    Article  PubMed  CAS  Google Scholar 

  20. Tanonaka K, Kajiwara H, Kameda H, Takasaki A, Takeo S. 1999. Relationship between myocardial cation content and injury in reperfused rat hearts treated with cation channel blockers. Eur J Pharmacol 372:37–48.

    Article  PubMed  CAS  Google Scholar 

  21. Sanbe A, Tanonaka K, Hanaoka Y, Katoh T, Takeo S. 1993. Regional energy metabolism of failing hearts following myocardial infarction. J Mol Cell Cardiol 25:995–1013.

    Article  PubMed  CAS  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the folin phenol reagent. J Biol Chem 261:6300–6306.

    Google Scholar 

  23. Takeo S, Miyake K, Tanonaka K, Takagi N, Takagi K, Kishimoto K, Suzuki M, Katsuragi A, Goto M. 1996. Beneficial effect of nebracetam on energy metabolism after microsphere-induced embolism in rat brain. Arch Int Pharmacodyn 331:232–245.

    PubMed  CAS  Google Scholar 

  24. Takeo S, Tanonaka K, Tanonaka R, Miyake K, Hisayama H, Ueda N, Kawakami K, Tsumura H, Katsushika S, Tanigichi Y. 1991. Alterations in cardiac function and subcellular membrane activities after hypervitaminosis. D3. Mol Cell Biochem 107:169–183.

    Article  PubMed  CAS  Google Scholar 

  25. Kamo N, Muramatsu M, Hongoh R, Kobatake Y. 1979. Membrane potential measured with an electrode sensitive to tetraphenyl-phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121.

    Article  PubMed  CAS  Google Scholar 

  26. Brierley GP, Jurkowits M, Jung DW. 1978. Osmotic swelling of heart mitochondria in acetate and chloride salts. Arch Biochem Biophys 126:276–288.

    Article  Google Scholar 

  27. Ladilov Y, Haffner S, Balser-Schafer C, Maxeiner H, Piper HM. 1999. Cardioprotective effects of KB-R7943: a novel inhibitor of the reverse mode of Na+/Ca2+ exchanger. Am J Physiol 276: H1868–H1876.

    PubMed  CAS  Google Scholar 

  28. Murphy E, Perlman M, London RE, Steenbergen C. 1991. Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res 68:1250–1258.

    Article  PubMed  CAS  Google Scholar 

  29. Silverman HS, Stern MD. 1994. Ionic basis of ischemic cardiac injury: insights from cellular studies. Cardiovasc Res 28:581–597.

    Article  PubMed  CAS  Google Scholar 

  30. Ju Y-K, Saint DA, Gage PW. 1996. Hypoxia increases persistent sodium current in rat ventricular myocytes. J Physiol (London) 497.2:337–347.

    CAS  Google Scholar 

  31. Ando H. 1990. Novel effect of azide on sodium channel of Xenopus oocytes. Biochem Biophys Res Commun 172:300–305.

    Article  PubMed  CAS  Google Scholar 

  32. Guc OM, Boachi-Ansah G, Kane KA, Wadworth RM. 1993. Comparison of antiarrhythmic and electrophysiologic effects of diltiazem and its analogue siratiazem. J Cardiovasc Pharmacol 22:681–686.

    Article  PubMed  CAS  Google Scholar 

  33. Cohen C-M, Gettes LS, Katzung BG. 1984. Maximal upstroke velocity as an index of available sodium conductance. Comparison of maximal upstroke velocity and voltage clamp measurements of sodium current in rabbit Purkinje fibers. Circ Res 54:636–651.

    Article  PubMed  CAS  Google Scholar 

  34. Takeo S, Yamada H, Tanonaka K, Hayashi M, Sunagawa N. 1990. Possible involvement of membrane-stabilizing action in beneficial effect of beta-adrenoceptor blocking agents on hypoxic and posthypoxic myocardium. J Pharmacol Exp Ther 254:847–856.

    PubMed  CAS  Google Scholar 

  35. Neely JR, Grotyohann LW. 1984. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic heart. Cir Res 55:816–824.

    Article  CAS  Google Scholar 

  36. Docherty JC, Kuzio B, Siivester JA, Bowes J, Thiemermann C. 1999. An inhibitor of poly (ADP-ribose) synthase activity reduces contractile dysfunction and preserves high-energy phosphate levels during reperfusion of ischaemic rat heart. Br J Pharmacol 124:1760–1766.

    Google Scholar 

  37. Liu J-X, Tanonaka K, Sanbe A, Yamamoto K, Takeo S. 1993. Beneficial effects of quinidine on post-ischemic contractile failure of isolated rat hearts. J Mol Cell Cardiol 25:1249–1263.

    Article  PubMed  CAS  Google Scholar 

  38. Nayler WG, Panagiotopoulos S, Elz JS, Daly MJ. 1988. Calcium mediated damage during postischemic reperfusion. J Mol Cell Cardiol 20(Suppl II):41–54.

    Article  PubMed  CAS  Google Scholar 

  39. Cockrell RS. 1973. Energy-linked ion translocation in submitochondrial particles.3. Transport of monovalent cations by submitochondrial particles. J Biol Chem 248:6828–6833.

    PubMed  CAS  Google Scholar 

  40. Mitchell P, Mole J. 1969. Translocation of some anions cations and acids in rat liver mitochondria. Eur J Biochem 9:149–55.

    Article  PubMed  CAS  Google Scholar 

  41. Papa S, Guerrieri F, Simone S, Lorusso M, Larosa D. 1973. Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Biochim Biophys Acta 292:20–38.

    Article  PubMed  CAS  Google Scholar 

  42. Nath S, Garlid KD. 1988. In: Integration of mitochondrial function (Lemasters JJ, Hachenbrock CR, Thurman RG, Westerhoff HV. eds.), Plenum Press, New York, pp. 357–364.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Takeo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Takeo, S., Iwai, T., Tanonaka, K. (2003). Sodium Overload and Mitochondrial Damage in Ischemic/Reperfused Heart. In: Dhalla, N.S., Takeda, N., Singh, M., Lukas, A. (eds) Myocardial Ischemia and Preconditioning. Progress in Experimental Cardiology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0355-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0355-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5036-1

  • Online ISBN: 978-1-4615-0355-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics