Skip to main content

Nutraceutical Approaches in the Management of Cardiovascular Dysfunctions Associated with Diabetes Mellitus

  • Chapter
  • First Online:
Diabetic Cardiomyopathy

Abstract

Diabetes is a prime risk factor in cardiovascular disease (CVD), which includes peripheral vascular disease, coronary artery disease, and cerebrovascular disease. Management of cardiovascular dysfunctions associated with diabetes has been a challenge for decades. The nutraceutical approach for prevention of diabetic cardiovascular complications has been a considerably newer trend. Nutraceuticals are medicinal foods that help in maintaining the health of individuals, thereby preventing or treating diseases. A literature search showed that several nutraceuticals used as dietary supplements have the ability to reduce cardiovascular risk factors. Thus, the nutraceutical approach can be very promising in the treatment of diabetic cardiovascular complications. In this review, we summarize the recent research findings on dietary fiber, antioxidants, prebiotics, and probiotics to highlight the benefits of using nutraceuticals in the management of diabetes-associated cardiovascular dysfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2008) Traditional medicine. http://www.who.int/mediacentre/factsheets/fs134/en/

  2. Zarraga I, Schwartz E (2006) Impact of dietary patterns and interventions on cardiovascular health. Circulation 114:961–973

    Article  CAS  PubMed  Google Scholar 

  3. Retelny VS, Neuendorf A, Roth JL (2008) Nutrition protocols for the prevention of cardiovascular disease. Nutr Clin Pract 23:468–476

    Article  PubMed  Google Scholar 

  4. Dureja H, Kaushik D, Kumar V (2003) Developments in nutraceuticals. Indian J Pharmacol 35:363–372

    Google Scholar 

  5. Jaap GN, Jerrold MO (2006) Inflamed fat: what starts the fire. J Clin Invest 116:33–35

    Google Scholar 

  6. Grundy SM, Brewer HB, Cleeman JI et al (2004) Definition of metabolic syndrome: report of the National Heart, Lung and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109:433–438

    Article  PubMed  Google Scholar 

  7. Jaswinder KS, Gokhan SH (1999) The role of TNF in adipocyte metabolism. Semin Cell Dev Biol 10:19–29

    Article  Google Scholar 

  8. Stefan N, Vozarova B, Funahashi T et al (2002) Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes 51:1884–1888

    Article  CAS  PubMed  Google Scholar 

  9. He Z, Rask-Madsen C, King GL (2003) Managing heart disease: mechanisms of cardiovascular complications in diabetes and potential new pharmacological therapies. Eur Heart J Suppl 5(Suppl B):B51–B57

    Article  CAS  Google Scholar 

  10. Perseghin G, Scifo P, Cobelli FD et al (1999) Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 48:1600–1606

    Article  CAS  PubMed  Google Scholar 

  11. Tripathy D, Dandona P (2002) Acute elevation of plasma free fatty acids increases reactive oxygen species (ROS) generation by polymorphonuclear cells, induces nuclear factor-kB (NF-kB) and impairs brachial artery reactivity in healthy subjects. In: 62nd Scientific Sessions of the American Diabetes Association, San Francisco

    Google Scholar 

  12. Wellen KE, Hotamisligil GS (2005) Inflammation, stress and diabetes. J Clin Invest 115:1111–1119

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Hotamisligil GS, Peraldi P, Budavari A et al (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271:665–668

    Article  CAS  PubMed  Google Scholar 

  14. Dong M, Su D, Coudriet GM, Hyun Kim D et al (2009) FoxO1 links insulin resistance to proinflammatory cytokine IL-1β production in macrophages. Diabetes 58(11):2624–2633

    Article  PubMed  Google Scholar 

  15. Dzau V, Braunwald E (1999) Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am Heart J 121:1244–1263

    Article  Google Scholar 

  16. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  17. Woollard KJ, Geissmann F (2010) Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7:77–86

    Article  PubMed Central  PubMed  Google Scholar 

  18. Vallance P, Chan N (2001) Endothelial function and nitric oxide: clinical relevance. Heart 85:342–350

    Article  CAS  PubMed  Google Scholar 

  19. Landmesser U, Hornig B, Drexler H (2004) Endothelial function: a critical determinant in atherosclerosis. Circulation 109:11–27

    Article  Google Scholar 

  20. Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115:1285–1295

    PubMed  Google Scholar 

  21. Hamilton CA, Miller WH, Brosnan MJ et al (2004) Strategies to reduce oxidative stress in cardiovascular disease. Clin Sci (Lond) 106:219–234

    Article  CAS  Google Scholar 

  22. Taniyama Y, Griendling KK (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42:1075–1081

    Article  CAS  PubMed  Google Scholar 

  23. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CAS  PubMed  Google Scholar 

  24. Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury. Part II: Animal and human studies. Circulation 108:2034–2040

    Article  PubMed  Google Scholar 

  25. Jay D, Hitomi H, Griendling KK (2006) Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med 40:183–192

    Article  CAS  PubMed  Google Scholar 

  26. Packard CJ, Caslake M, Shepherd J (2000) The role of small, dense low density lipoprotein (LDL): a new look. Int J Cardiol 74:S17–S22

    Article  PubMed  Google Scholar 

  27. Ginsberg H, Zhang YL, Antonio H (2005) Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res 36:232–240

    Article  CAS  PubMed  Google Scholar 

  28. Reaven GM, Chen YD, Jeppesen J et al (1993) Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles. J Clin Invest 92:141–146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Shaul PW (2003) Regulation of endothelial nitric oxide synthase. Annu Rev Physiol 64(749):774

    Google Scholar 

  30. Pariza MW, Park Y, Cook ME (2000) Mechanisms of action of conjugated linoleic acid: evidence and speculation. Proc Soc Exp Biol Med 223:8–13

    Article  CAS  PubMed  Google Scholar 

  31. Lee K, Kritchevsky D, Pariza M (1994) Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis 8:19–25

    Article  Google Scholar 

  32. Ryder JW, Portocarrero CP, Song XM et al (2001) Isomer-specific antidiabetic properties of conjugated linoleic acid. Diabetes 50:1149–1157

    Article  CAS  PubMed  Google Scholar 

  33. Evans M, Brown J, McIntosh M (2002) Isomer-specific effects of conjugated linoleic acid (CLA) on adiposity and lipid metabolism. J Nutr Biochem 13:508–516

    Article  CAS  PubMed  Google Scholar 

  34. Grundy SM, Denke MA (1990) Dietary influences on serum lipids and lipoproteins. J Lipid Res 31:1149–1172

    CAS  PubMed  Google Scholar 

  35. De Lorgeril M, Salen P, Martin JL et al (1999) Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon diet heart study. Circulation 99:779–785

    Article  PubMed  Google Scholar 

  36. Kris-Etherton PM, Taylor DS, Yu-Poth S et al (2000) Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr 71(Suppl 1):179S–188S

    CAS  PubMed  Google Scholar 

  37. Mori TA, Bao DQ, Burke V et al (1999) Docosahexanoic acid but not eicosapentaenoic acid lowers ambulatory blood pressure and heart rate in humans. Hypertension 34:253–260

    Article  CAS  PubMed  Google Scholar 

  38. Hartweg J, Farmer AJ, Perera R et al (2007) Meta-analysis of the effects of n-3 polyunsaturated fatty acids on lipoproteins and other emerging lipid cardiovascular risk markers in patients with type 2 diabetes. Diabetologia 50:1593–1602

    Article  CAS  PubMed  Google Scholar 

  39. Lau FC, Bagchi M, Sen CK et al (2008) Nutrigenomic basis of beneficial effects of chromium (III) on obesity and diabetes. Mol Cell Biochem 317:1–10

    Article  CAS  PubMed  Google Scholar 

  40. Anderson RA, Cheng N, Bryden NA et al (1997) Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 46(11):1786–1791

    Article  CAS  PubMed  Google Scholar 

  41. Broadhurst CL, Domenico P (2006) Clinical studies on chromium picolinate supplementation in diabetes mellitus: a review. Diabetes Technol Ther 8(6):677–687

    Article  CAS  PubMed  Google Scholar 

  42. Balon TW, Gu JL, Tokuyama Y et al (1995) Magnesium supplementation reduces development of diabetes in rat model of spontaneous non-insulin dependent diabetes mellitus. Am J Physiol 269:E745–E752

    CAS  PubMed  Google Scholar 

  43. Kendall MJ, Nuttall SL, Martin U (1998) Antioxidant therapy—a new therapeutic option for reducing mortality from coronary artery disease. J Clin Pharm Ther 23:323–325

    Article  CAS  PubMed  Google Scholar 

  44. Riccioni G, Bucciarelli T, Mancini B et al (2007) Antioxidant vitamin supplementation in cardiovascular diseases. Ann Clin Lab Sci 37:89–95

    CAS  PubMed  Google Scholar 

  45. Devaraj S, Jialal I (2000) Low-density lipoprotein postsecretory modification, monocyte function, and circulating adhesion molecules in type 2 diabetic patients with and without macrovascular complications: the effect of alpha-tocopherol supplementation. Circulation 102:191–196

    Article  CAS  PubMed  Google Scholar 

  46. Isomaa B, Almgren P, Tuomi T et al (2001) Cardiovascular morbidity and mortality associated with metabolic syndrome. Diabetes Care 24:683–689

    Article  CAS  PubMed  Google Scholar 

  47. Gaede P, Poulsen HE, Parving HH et al (2001) Double-blind, randomised study of the effect of combined treatment with vitamin C and E on albuminuria in type 2 diabetic patients. Diabet Med 18:756–760

    Article  CAS  PubMed  Google Scholar 

  48. Singh U, Jiala I (2008) Alpha-lipoic acid supplementation and diabetes. Nutr Rev 66: 646–657

    Article  PubMed Central  PubMed  Google Scholar 

  49. Kanter M, Meral I, Yener Z et al (2003) Partial regeneration/proliferation of the β-cells in the islets of Langerhans by Nigella sativa L. in streptozotocin-induced diabetic rats. Tohoku J Exp Med 201:213–219

    Article  PubMed  Google Scholar 

  50. Fararh KM, Atoji Y, Shimizu Y et al (2002) Insulinotropic properties of Nigella sativa oil in streptozotocin plus nicotinamide diabetic hamster. Res Vet Sci 73:279–282

    Article  CAS  PubMed  Google Scholar 

  51. Meral I, Yener Z, Kahraman T et al (2001) Effect of Nigella sativa on glucose concentration, lipid peroxidation, antioxidant defense system and liver damage in experimentally-induced diabetic rabbits. J Vet Med A Physiol Pathol Clin Med 48:593–599

    Article  CAS  PubMed  Google Scholar 

  52. El-Dakhakhny M, Mady N, Lembert N et al (2002) The hypoglycaemic effect of Nigella sativa oil is mediated by extrapancreatic actions. Planta Med 68:463–464

    Article  Google Scholar 

  53. Morikawa T, Xu F, Ninomiya K et al (2004) Nigellamines A3, A4, A5 and C, new dolabellane-type diterpene alkaloids, with lipid metabolism-promoting activities from the Egyptian medicinal food black cumin. Chem Pharm Bull 52:494–497

    Article  CAS  PubMed  Google Scholar 

  54. Sitasawad SL, Shewade Y, Bhonde R (2000) Role of bitter gourd fruit juice in STZ- induced diabetic state in vivo and in vitro. J Ethnopharmacol 73:71–79

    Article  CAS  PubMed  Google Scholar 

  55. Karunanayake EH, Jeevathayaparan S, Tennekoon KH (1990) Effect of Momordica charantia fruit juice on streptozotocin-induced diabetes in rats. J Ethnopharmacol 30:199–204

    Article  CAS  PubMed  Google Scholar 

  56. Welihinda J, Arvidson G, Gylfe E et al (1982) The insulin-releasing activity of the tropical plant Momordica charantia. Acta Biol Med Ger 41:1229–1240

    CAS  PubMed  Google Scholar 

  57. Hannan JM, Ali L, Rokeya B et al (2007) Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption and enhancing insulin action. Br J Nutr 97:514–521

    Article  CAS  PubMed  Google Scholar 

  58. Effect of fenugreek on blood sugar and insulin in diabetic humans. http://clinicaltrials.gov

  59. Moorthy R, Prabhu KM, Murthy PS (2010) Anti-hyperglycemic compound (GII) from fenugreek (Trigonella foenum-graecum Linn.) seeds: purification and effect in diabetes mellitus. Indian J Exp Biol 48:1111–1118

    PubMed  Google Scholar 

  60. Mohamed GA (2013) Alliuocide A: a new antioxidant flavonoid from Allium cepa L. Phytopharmacology 4:220–227

    Google Scholar 

  61. Cheng HY, Lin TC, Yu KH et al (2003) Antioxidant and free radical scavenging activities of Terminalia chebula. Biol Pharm Bull 26:1331–1335

    Article  CAS  PubMed  Google Scholar 

  62. Kim JH, Hong C, Koo YC et al (2011) Oral administration of ethyl acetate soluble portion of Terminalia chebula conferring protection from streptozotocin-induced diabetes mellitus and its complications. Biol Pharm Bull 34:1702–1709

    Article  CAS  PubMed  Google Scholar 

  63. Sschmidt AM, Yan SD, Wautier JL et al (1999) Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 84:489–497

    Article  Google Scholar 

  64. Hartge M, Unger T, Kintscher U (2007) The endothelium and vascular inflammation in diabetes. Diab Vasc Dis Res 4:84–88

    Article  PubMed  Google Scholar 

  65. Navarro J, Mora C (2005) Role of inflammation in diabetic complications. Nephrol Dial Transplant 20:2601–2604

    Article  PubMed  Google Scholar 

  66. Festa A, Haffner S (2005) Inflammation and cardiovascular disease in patients with diabetes: lessons from the Diabetes Control and Complications Trial. Circulation 111:2414–2415

    Article  PubMed  Google Scholar 

  67. Omara E, Kama A, Alqahtani A et al (2010) Herbal medicines and nutraceuticals for diabetic vascular complications: mechanisms of action and bioactive phytochemicals. Curr Pharm Des 16:3776–3807

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veeranjaneyulu Addepalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daftardar, S., Kaur, G., Addepalli, V. (2014). Nutraceutical Approaches in the Management of Cardiovascular Dysfunctions Associated with Diabetes Mellitus. In: Turan, B., Dhalla, N. (eds) Diabetic Cardiomyopathy. Advances in Biochemistry in Health and Disease, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9317-4_24

Download citation

Publish with us

Policies and ethics