Skip to main content

History of Respiratory Gas Monitoring in Anesthesia

  • Chapter
The Wondrous Story of Anesthesia
  • 3870 Accesses

Abstract

Before 1950, anesthetists assessed adequacy of ventilation by watching or rarely measuring gas volume exchange or chest movements. About 1950, infrared (IR) light absorption by CO2 was used to continuously measure expired CO2, a first real monitor of respiration. It was dubbed capnometry, and remains the basis of all respiratory gas monitors. Gaseous oxygen was first monitored in anesthetic circuits using a polarographic oxygen electrode, made available about 1960. Mass spectrometers that could continuously measure O2, CO2, N2O and anesthetic gases were rarely used until 1975 when methods were introduced to use one mass spectrometer to sequentially measure gases sampled through long catheters from many patients. In the late 1980s, infra red detectors of CO2 and anesthetic vapors were combined with polarographic O2 electrodes to make the modern operating room gas monitoring devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beecher HK, Todd DP. A study of the deaths associated with anesthesia and surgery: based on a study of 599, 548 anesthesias in ten institutions 1948–1952, inclusive. Ann Surg. 1954;140:2–35.

    Article  CAS  PubMed  Google Scholar 

  2. Dripps RD, Lamont A, Eckenhoff JE. The role of anesthesia in surgical mortality. JAMA. 1961;178:261–6.

    Article  CAS  PubMed  Google Scholar 

  3. Tyndall J. On the transmission of heat of different qualities through gases of different kinds. Proc R Inst G B. 1859;3:155–8.

    Google Scholar 

  4. Pfund AH, Gemmill CL. An infrared absorption method for the quantitative analysis of respiratory and other gases. Bull Johns Hopkins Hosp. 1940;67:61–5.

    CAS  Google Scholar 

  5. Luft K. Über eine neue Methode der registrierenden Gasanalyse mit Hilfe der Absorption ultraroter Strahlen ohne spektrale Zerlegung. Ztschrf Techn Phys. 1943;24:97–104.

    CAS  Google Scholar 

  6. Elam JO, Brown ES, Ten Pas RH. Carbon dioxide homeostasis during anesthesia. I. Instrumentation. Anesthesiology. 1955;16:876–85.

    Article  CAS  PubMed  Google Scholar 

  7. Eger EI II, Saidman LJ, Brandstater B. Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology. 1965;26:756–63.

    Article  PubMed  Google Scholar 

  8. Fowler KT. The respiratory mass spectrometer. Phys Med Biol. 1969;14:185–99.

    Article  CAS  PubMed  Google Scholar 

  9. Davies NJ, Denison DM. The uses of long sampling probes in respiratory mass spectrometry. Respir Physiol. 1979;37:335–46.

    Article  CAS  PubMed  Google Scholar 

  10. Ozanne GM, Young WG, Mazzei WJ, Severinghaus JW. Multipatient anesthetic mass spectrometry: rapid analysis of data stored in long catheters. Anesthesiology. 1981;55:62–70.

    Article  CAS  PubMed  Google Scholar 

  11. Hendrickx JFA, Hendrikus JM, Lemmens RC, DeWolf AM, Saidman LJ. Can modern infrared analyzers replace gas chromatography to measure anesthetic vapor concentrations? BMC Anesthesiology. 2008;8:2.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ilsley AH, Runciman WB. An evaluation of fourteen oxygen analysers for use in patient breathing circuits. Anaesth Intensive Care. 1986;14:431–6.

    CAS  PubMed  Google Scholar 

  13. Pflüger EFW. Über die Diffusion des Sauerstoffs, den Ort und die Gesetze der Oxydationsprozesse im tierischen Organismus. Arch gesamte Physiol. 1872;6:43–64.

    Article  Google Scholar 

  14. Riley RL, Campbell EJ, Shepard RH. A bubble method for estimation of PCO2 and PO2 in whole blood. J Appl Physiol. 1957;11:245–9.

    CAS  PubMed  Google Scholar 

  15. Vogt Lorentzen F, Brinch Johnsen T. Quantitative gas determination in the Scholander-Roughton syringe. Scand J Clin Lab Invest. 1951;3:241–3.

    Article  CAS  PubMed  Google Scholar 

  16. O’Shaughnessy WB. Experiments on the blood in cholera. Lancet. 1831;17:490.

    Article  Google Scholar 

  17. Walter F. Untersuchungen über die Wirkung der Saüren auf den thierisch on Organimus. Archiv f exper Pathol u Phar. 1877;5:148–55.

    Article  Google Scholar 

  18. van’t Hoff JH. The function of osmotic pressure in the analogy between solutions and gases (translated by W. Ramsay). Philos Mag. 1888;26:81–105.

    Article  Google Scholar 

  19. Arrhenius SA. Über die Dissociation der in Wasser gelösten Stoffe. Z Physik Chemie. 1887;1:631–58.

    Google Scholar 

  20. Ostwald WF. Die Dissocation des Wassers. Z Physik Chemie. 1893;11:521.

    Google Scholar 

  21. Nernst WH. Die elektromotorische Wirksamkeit de Jonen. Z Physik Chemie. 1889;4:129–81.

    Google Scholar 

  22. Sørensen SPL. Enzymstudien II. Mitteilung über die Messung und die Bedeutung der Wasserstoffionen-konzentration bein enzymatischen Prozessen. Biochem Z. 1909;21:131–4.

    Google Scholar 

  23. Cremer M. Über die Ursache der elektromotorischen Eigenschaften der Gewebe. zugleich ein Beitrag zur Lehre von den polyphasischen Elektrolytketten. Z Biol. 1909;47:562–608.

    Google Scholar 

  24. Haber F, Klemensiewicz Z. Über elektrische Phasengrenzkrafte. Z Phys Chem. 1909;77:385–97.

    Google Scholar 

  25. Kerridge PM. The use of the glass electrode in biochemistry. Biochem J. 1925;19:611–7.

    CAS  PubMed  Google Scholar 

  26. McInnes DA, Belcher D. A durable glass electrode. Ind Eng Chem Anal Ed. 1933;5:199–200.

    Article  Google Scholar 

  27. Henderson LJ. Das Gleichgewicht zwischen Basen und Sauren im tierischen Organismus. Ergebn Physiol. 1909;8:254–325.

    Article  CAS  Google Scholar 

  28. Henderson LJ. Blood as a physicochemical system. J Biol Chem. 1921:26;411–9

    Google Scholar 

  29. Hasselbalch KA. Die Berechnung der Wasserstoffzahle des Blutes aus der freien und gebundenen Kohlensaure desselben und die Sauerstoffbindung des Blutes als Funktion des Wasserstoffzahl. Biochem Z. 1917;78:112–44.

    Google Scholar 

  30. Van Slyke DD, Neill JM. The determination of gases in blood and other solutions by vacuum extraction and manometric measurement. J Biol Chem. 1924;61:523–73.

    CAS  Google Scholar 

  31. Ibsen B. The anaesthetist’s viewpoint on the treatment of respiratory complications in poliomyelitis during the epidemic in Copenhagen, 1952. Proc R Soc Med. 1954;47:72–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Astrup P. A simple electrometric technique for the determination of carbon dioxide tension in blood and plasma, total content of carbon dioxide in plasma and bicarbonate content in separated plasma at a fixed carbon dioxide tension. Scand J Clin Lab Invest. 1956;8:33–44.

    Article  CAS  PubMed  Google Scholar 

  33. Siggaard Andersen O, Engel K, Jorgensen K, Astrup P. A micro method for determination of pH, carbon dioxide tension, base excess and standard bicarbonate in capillary blood. Scand J Clin Lab Invest. 1960;12:172–6.

    Article  Google Scholar 

  34. Siggaard Andersen O. The acid-base status of the blood. Scand J Clin Lab Invest. 1963;15(Suppl 70):92–6.

    Google Scholar 

  35. Siggaard Andersen O. The van Slyke equation. Scand J Clin Lab Invest Suppl. 1977;146:15–20.

    Article  CAS  PubMed  Google Scholar 

  36. Gesell R, McGinty DA. Regulation of respiration: VI. Continuous electrometric methods of recording changes in expired carbon dioxide and oxygen. Am J Physiol. 1926;79:72–90.

    CAS  Google Scholar 

  37. Stow RW, Randall BF. Electrical measurement of the PCO2 of blood. Am J Physiol. 1954;179:678. (abstract).

    Google Scholar 

  38. Severinghaus JW, Astrup PB. History of blood gas analysis. Int Anesthesiol Clin. 1987;25:1–224.

    CAS  PubMed  Google Scholar 

  39. Danneel HL. Über den durch diffundierende Gase hervorgerufenen Reststrom. Z Elektrochem. 1897;98:227–42.

    Article  Google Scholar 

  40. Heyrovsky J. Electrolysis with the dropping mercury electrode. Chemicke Listy. 1922;16:256–304.

    Google Scholar 

  41. Baumberger JP, Goodfriend RB. Determination of arterial oxygen tension in man by equilibration through intact skin. Fed Proc. 1951;10:10. (abstract).

    Google Scholar 

  42. Beecher HK, Follansbee R, Murphy AJ, Craig FN. Determination of the oxygen content of small quantities of body fluids by polarographic analysis. J Biol Chem. 1942;146:197–206.

    CAS  Google Scholar 

  43. Clark LC, Gollan F, Gupta VB. The oxygenation of blood by gas dispersion. Science. 1950;111:85–7.

    Article  PubMed  Google Scholar 

  44. Clark LC Jr, Wolf R, Granger D, Taylor Z. Continuous recording of blood oxygen tensions by polarography. J Appl Physiol. 1953;6:189–93.

    CAS  PubMed  Google Scholar 

  45. Clark LC. Monitor and control of blood and tissue O2 tensions. Trans Am Soc Artif Intern Organs. 1956;2:41–8.

    Google Scholar 

  46. Severinghaus JW, Bradley AF. Electrodes for blood PO2 and PCO2 determination. J Appl Physiol. 1958;13:515–20.

    CAS  PubMed  Google Scholar 

  47. Severinghaus JW. Electrodes for blood and gas PCO2, PO2, and blood pH. Acta Anesth Scand Suppl. 1962;11:207–20.

    Article  CAS  Google Scholar 

  48. Avery ME. Presidential address. What is good for children is good for mankind: the role of imagination in discovery. Science. 2004;306:2212–3.

    Article  CAS  PubMed  Google Scholar 

  49. Rooth G, Sjostedt S, Caligara F. Bloodless determination of arterial oxygen tension by polarography. Sci Tools LKW Instrument J. 1957;4:37–9.

    CAS  Google Scholar 

  50. Huch R, Huch A, Lübbers DW. Transcutaneous measurement of blood Po2 (tcPo2) -- xMethod and application in perinatal medicine. J Perinat Med. 1973;1:183–91.

    Article  CAS  PubMed  Google Scholar 

  51. Huch R, Lübbers DW, Huch A. Quantitative continuous measurement of partial oxygen pressure on the skin of adults and new-born babies. Pflügers Arch. 1972;337:185–98.

    Article  CAS  PubMed  Google Scholar 

  52. Eberhard P, Mindt W. Continuous PO2 monitoring of newborns by skin electrodes. Med Biol Eng.1975:13;436–42.

    Google Scholar 

  53. Palmisano BW, Severinghaus JW. Transcutaneous PCO2 and PO2: a multicenter study of accuracy. J Clin Monit. 1990;6:189–95.

    Article  CAS  PubMed  Google Scholar 

  54. Beran AV, Huxtable RF, Sperling DR. Electrochemical sensor for continuous transcutaneous PCO2 measurement. J Appl Physiol. 1976;41:442–7.

    CAS  PubMed  Google Scholar 

  55. Beran AV, Shigezawa GY, Yeung HN, Huxtable RF. An improved sensor and a method for transcutaneous CO2 monitoring. Acta Anaesthesiol Scand Suppl. 1978;68:111–7.

    Article  CAS  PubMed  Google Scholar 

  56. Huch A, Seiler D, Meinzer K, Huch R, Galster H, Lubbers DW. Transcutaneous PCO2 measurement with a miniaturised electrode. Lancet. 1977;1:982–3.

    Article  CAS  PubMed  Google Scholar 

  57. Severinghaus JW, Stafford M, Bradley AF. tcPCO2 electrode design, calibration and temperature gradient problems. Acta Anaesthesiol Scand Suppl. 1978;68:118–22.

    Article  CAS  PubMed  Google Scholar 

  58. Parker D, Delpy DT, Reynolds EO. Single electrochemical sensor for transcutaneous measurement of PO2 and PCO2. Birth Defects Orig Artic Ser. 1979;15:109–16.

    CAS  PubMed  Google Scholar 

  59. Severinghaus JW. A combined transcutaneous PO2-PCO2 electrode with electrochemical HCO3 – stabilization. J Appl Physiol. 1981;51:1027–32.

    CAS  PubMed  Google Scholar 

  60. Eberhard P, Gisiger PA, Gardaz JP, Spahn DR. Combining transcutaneous blood gas measurement and pulse oximetry. Anesth Analg. 2002;94:S76–80.

    PubMed  Google Scholar 

  61. Comroe JH, Botelho S. The unreliability of cyanosis in the recognition of arterial anoxemia. Am J Med Sci. 1947;124:1–6.

    Article  PubMed  Google Scholar 

  62. Kirchhoff GR, Bunsen RWE. Chemische Analyse durch Spectralbeobachtungen. Leipzig, Engelmann; 1860, p. 98.

    Google Scholar 

  63. Lambert JH. Photometria, siva de mensura et gradibus luminis, colorum et umbrae (1760), Klassiker der exakten Wissenschafter. Edited by O W. Leipzig, W. Engelmann; 1892, pp. 31–3.

    Google Scholar 

  64. Beer A. Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Ann Phys Chem. 1852:86;78–88.

    Google Scholar 

  65. Stokes GG. On the reduction and oxygenation of the colouring matter of the blood. Proc Roy Soc. 1864;13:355–64.

    Article  Google Scholar 

  66. Hoppe-Seyler F. Über das Verhalten des Blutfarbstoffes im Spektrum des Sonnenlichtes. Virchow’s Arch. 1862;23:446–9.

    Article  Google Scholar 

  67. Vierordt K. Die quantitative Spektralanalyse in ihrer Anwendung auf Physiologie, Chemie und Technologie. (Ger). Tubingen, H. Laupp’sche Buchhandlung; 1876.

    Google Scholar 

  68. Nicolai L. Über Sichbarmachung, Verlauf und chemische Kinetik der Oxyhemoglobinreduktion im lebenden Gewebe. besonders in der menschlichen Haut. Arch Ges Physiol. 1932;229:372–89.

    Article  CAS  Google Scholar 

  69. Kramer K. Bestimmung des Sauerstoffgehaltes und der Hämoglobin Konzentration in Hämoglobinloslungen und hämolysierten Blut auf lichtelektrischen Wege (Ger). Z Biol. 1934;95:126–34.

    CAS  Google Scholar 

  70. Kramer K. Ein Verfahren zur fortlaufenden Messung des Sauerstoffgehaltes im stromenden Blute an uneroffneten Gefassen. Z Biol. 1935;96:61–75.

    CAS  Google Scholar 

  71. Matthes K. Untersuchungen uber die Sauerstoffsattingungen des menschlichen Arterienblutes. Arch Exp Pathol Pharmacol. 1935;179:698–711.

    Article  CAS  Google Scholar 

  72. Matthes K, Gross F. Untersuchunger über die Absorption von rotem und ultraotem Licht durch kohlenoxydesattigtes und reduziertes Blut. Arch Exp Pathol Pharmacol. 1939;191:369–90.

    Article  CAS  Google Scholar 

  73. Matthes K, Gross F. Fortlaufende Registrierung der Lichtabsorption des Blutes in zwei verschiedenen. Arch Exp Pathol Pharmacol. 1939;191:381–90.

    Article  CAS  Google Scholar 

  74. Matthes K, Gross F. Zur methode der fortlaufenden Registrierung der Farbe des menschlichen Blutes. Arch Exp Pathol Pharmacol. 1939;191:523–8.

    Article  CAS  Google Scholar 

  75. Squire JR. Instrument for measuring quantity of blood and its degree of oxygenation in web of the hand. Clin Sci. 1940;4:331–9.

    Google Scholar 

  76. Millikan GA. The oximeter: an instrument for measuring continuously oxygen saturation of arterial blood in man. Rev Sci Instr. 1942;13:434–44.

    Article  CAS  Google Scholar 

  77. Faulconer A, Pender JW, Bickford RG. The influence of partial pressure of nitrous oxide on the depth of anesthesia and the electroencephalogram in man. Anesthesiology. 1949;10:601–9.

    Article  CAS  PubMed  Google Scholar 

  78. Wood EH, Geraci JE. Photoelectric determination of arterial oxygen saturation in man. J Lab Clin Med. 1949;34:387–401.

    CAS  PubMed  Google Scholar 

  79. Wood EH. Oximetry, medical physics, Vol 2. Edited by O Glasser. Chicago, Year Book; 1950. pp. 664–80.

    Google Scholar 

  80. Burchell HB. Symposium on in vivo photometry of blood in human beings. Proc Mayo Clin. 1950;25:377–412.

    CAS  Google Scholar 

  81. Aoyagi T. Pulse oximetry: its invention, theory, and future. J Anesth. 2003;17:259–66.

    Google Scholar 

  82. Nakajima S, Harai Y, Takase H. Performances of new pulse wave earpiece oximeter. Respir Circ. 1975:23:41–5.

    Google Scholar 

  83. Yelderman M, New W Jr. Evaluation of pulse oximetry. Anesthesiology. 1983;59:349–52.

    Article  CAS  PubMed  Google Scholar 

  84. Moller JT, Pedersen T, Rasmussen LS, Jensen PF, Pedersen BD, Ravlo O, Rasmussen NH, Espersen K, Johannessen NW, Cooper JB et al. Randomized evaluation of pulse oximetry in 20,802 patients: I. Design, demography, pulse oximetry failure rate, and overall complication rate. Anesthesiology. 1993;78:436–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Severinghaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Edmond I Eger, MD

About this chapter

Cite this chapter

Severinghaus, J. (2014). History of Respiratory Gas Monitoring in Anesthesia. In: Eger II, E., Saidman, L., Westhorpe, R. (eds) The Wondrous Story of Anesthesia. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8441-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8441-7_55

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8440-0

  • Online ISBN: 978-1-4614-8441-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics