Skip to main content

Toll-Like Receptors and Neuroinflammation

  • Chapter
  • First Online:
Neuron-Glia Interaction in Neuroinflammation

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 7))

  • 1573 Accesses

Abstract

Inflammatory responses are pathological hallmarks of infectious diseases of the nervous system such as bacterial meningitis and viral encephalitis. Noninfectious neurological disease or injury often accompanies neuroinflammation, although the underlying mechanisms of such “sterile neuroinflammation” are not completely understood. Studies conducted over the past 10 years on the function of Toll-like receptors (TLRs) in the nervous system have shed new light on the molecular and cellular mechanisms of neuroinflammation. TLRs belong to a class of pattern-recognition receptors that play important roles in host defense against pathogens and tissue injury/recovery by recognizing a wide variety of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In the nervous system, different members of the TLR family are expressed on astrocytes, microglia, oligodendrocytes, and Schwann cells, implicating these glial cells in neuroinflammation in pathological contexts. In this chapter, we summarize recent studies of TLR expression in the cells of the nervous system and discuss its roles in neuroinflammation in the context of infectious diseases as well as noninfectious neurological disorders such as stroke, spinal cord injury, and peripheral nerve injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511. doi:10.1038/nri1391

    Article  PubMed  CAS  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738. doi:10.1038/35099560

    Article  PubMed  CAS  Google Scholar 

  • Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD et al (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285:736–739

    Article  PubMed  CAS  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE et al (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034. doi:10.1074/jbc.M200497200

    Article  PubMed  CAS  Google Scholar 

  • Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G, Balsari A et al (2009) Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem 57:1013–1023. doi:10.1369/jhc.2009.953539

    Article  PubMed  CAS  Google Scholar 

  • Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S et al (2005) Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 202:1131–1139. doi:10.1084/jem.20050914

    Article  PubMed  CAS  Google Scholar 

  • Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O et al (2002) Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298:1025–1029. doi:10.1126/science.1075565

    Article  PubMed  CAS  Google Scholar 

  • Boivin A, Pineau I, Barrette B, Filali M, Vallieres N, Rivest S et al (2007) Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J Neurosci 27:12565–12576. doi:10.1523/JNEUROSCI.3027-07.2007

    Article  PubMed  CAS  Google Scholar 

  • Bolin LM, Verity AN, Silver JE, Shooter EM, Abrams JS (1995) Interleukin-6 production by Schwann cells and induction in sciatic nerve injury. J Neurochem 64:850–858

    Article  PubMed  CAS  Google Scholar 

  • Bowman CC, Rasley A, Tranguch SL, Marriott I (2003) Cultured astrocytes express toll-like receptors for bacterial products. Glia 43:281–291. doi:10.1002/glia.10256

    Article  PubMed  Google Scholar 

  • Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR et al (1999) Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285:732–736

    Article  PubMed  CAS  Google Scholar 

  • Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021

    PubMed  CAS  Google Scholar 

  • Bsibsi M, Nomden A, van Noort JM, Baron W (2012) Toll-like receptors 2 and 3 agonists differentially affect oligodendrocyte survival, differentiation, and myelin membrane formation. J Neurosci Res 90:388–398. doi:10.1002/jnr.22767

    Article  PubMed  CAS  Google Scholar 

  • Cao CX, Yang QW, Lv FL, Cui J, Fu HB, Wang JZ (2007) Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun 353:509–514. doi:10.1016/j.bbrc.2006.12.057

    Article  PubMed  CAS  Google Scholar 

  • Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD (2005) Differential activation of astrocytes by innate and adaptive immune stimuli. Glia 49:360–374. doi:10.1002/glia.20117

    Article  PubMed  Google Scholar 

  • Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I (2007) Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 115:1599–1608. doi:10.1161/CIRCULATIONAHA.106.603431

    Article  PubMed  CAS  Google Scholar 

  • Cassiani-Ingoni R, Cabral ES, Lunemann JD, Garza Z, Magnus T, Gelderblom H et al (2006) Borrelia burgdorferi induces TLR1 and TLR2 in human microglia and peripheral blood monocytes but differentially regulates HLA-class II expression. J Neuropathol Exp Neurol 65:540–548

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay S, Myers RR, Janes J, Shubayev V (2007) Cytokine regulation of MMP-9 in peripheral glia: implications for pathological processes and pain in injured nerve. Brain Behav Immun 21:561–568. doi:10.1016/j.bbi.2006.10.015

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Shi J, Jin W, Wang L, Xie W, Sun J et al (2008) Progesterone administration modulates TLRs/NF-kappaB signaling pathway in rat brain after cortical contusion. Ann Clin Lab Sci 38:65–74

    PubMed  CAS  Google Scholar 

  • Chen KB, Uchida K, Nakajima H, Yayama T, Hirai T, Rodriguez Guerrero A et al (2011) High-mobility group box-1 and its receptors contribute to proinflammatory response in the acute phase of spinal cord injury in rats. Spine (Phila Pa 1976) 36:2122–2129. doi:10.1097/BRS.0b013e318203941c

    Article  Google Scholar 

  • Cheng C, Qin Y, Shao X, Wang H, Gao Y, Cheng M et al (2007) Induction of TNF-alpha by LPS in Schwann cell is regulated by MAPK activation signals. Cell Mol Neurobiol 27:909–921. doi:10.1007/s10571-007-9215-4

    Article  PubMed  CAS  Google Scholar 

  • Colomar A, Marty V, Medina C, Combe C, Parnet P, Amedee T (2003) Maturation and release of interleukin-1beta by lipopolysaccharide-primed mouse Schwann cells require the stimulation of P2X7 receptors. J Biol Chem 278:30732–30740. doi:10.1074/jbc.M304534200

    Article  PubMed  CAS  Google Scholar 

  • Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K et al (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021. doi:10.1038/nature04223

    Article  PubMed  CAS  Google Scholar 

  • Curran CS, Demick KP, Mansfield JM (2006) Lactoferrin activates macrophages via TLR4-dependent and -independent signaling pathways. Cell Immunol 242:23–30. doi:10.1016/j.cellimm.2006.08.006

    Article  PubMed  CAS  Google Scholar 

  • Daffis S, Samuel MA, Suthar MS, Gale M Jr, Diamond MS (2008) Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol 82:10349–10358. doi:10.1128/JVI.00935-08

    Article  PubMed  CAS  Google Scholar 

  • Devaney JM, Greene CM, Taggart CC, Carroll TP, O’Neill SJ, McElvaney NG (2003) Neutrophil elastase up-regulates interleukin-8 via toll-like receptor 4. FEBS Lett 544:129–132

    Article  PubMed  CAS  Google Scholar 

  • Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371:1612–1623. doi:10.1016/S0140-6736(08)60694-7

    Article  PubMed  CAS  Google Scholar 

  • Echchannaoui H, Frei K, Schnell C, Leib SL, Zimmerli W, Landmann R (2002) Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J Infect Dis 186:798–806. doi:10.1086/342845

    Article  PubMed  CAS  Google Scholar 

  • Echchannaoui H, Bachmann P, Letiembre M, Espinosa M, Landmann R (2005) Regulation of Streptococcus pneumoniae distribution by Toll-like receptor 2 in vivo. Immunobiology 210:229–236

    Article  PubMed  CAS  Google Scholar 

  • El-Hage N, Podhaizer EM, Sturgill J, Hauser KF (2011) Toll-like receptor expression and activation in astroglia: differential regulation by HIV-1 Tat, gp120, and morphine. Immunol Invest 40:498–522. doi:10.3109/08820139.2011.561904

    Article  PubMed  CAS  Google Scholar 

  • Esen N, Tanga FY, DeLeo JA, Kielian T (2004) Toll-like receptor 2 (TLR2) mediates astrocyte activation in response to the Gram-positive bacterium Staphylococcus aureus. J Neurochem 88:746–758

    Article  PubMed  CAS  Google Scholar 

  • Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J, Harding CV et al (2007) Human-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc Natl Acad Sci U S A 104:18631–18635. doi:10.1073/pnas.0702130104

    Article  PubMed  CAS  Google Scholar 

  • Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M (2002) Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol 168:5989–5992

    PubMed  CAS  Google Scholar 

  • Hammarberg H, Piehl F, Cullheim S, Fjell J, Hokfelt T, Fried K (1996) GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury. Neuroreport 7:857–860

    Article  PubMed  CAS  Google Scholar 

  • Hao HN, Peduzzi-Nelson JD, VandeVord PJ, Barami K, DeSilva SP, Pelinkovic D et al (2009) Lipopolysaccharide-induced inflammatory cytokine production by Schwann’s cells dependent upon TLR4 expression. J Neuroimmunol 212:26–34. doi:10.1016/j.jneuroim.2009.04.020

    Article  PubMed  CAS  Google Scholar 

  • Harting MT, Jimenez F, Adams SD, Mercer DW, Cox CS Jr (2008) Acute, regional inflammatory response after traumatic brain injury: implications for cellular therapy. Surgery 144:803–813. doi:10.1016/j.surg.2008.05.017

    Article  PubMed  Google Scholar 

  • Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E, Tancredi S et al (2005) Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol 174:2942–2950

    PubMed  CAS  Google Scholar 

  • Hashimoto C, Hudson KL, Anderson KV (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52:269–279

    Article  PubMed  CAS  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR et al (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103. doi:10.1038/35074106

    Article  PubMed  CAS  Google Scholar 

  • He RL, Zhou J, Hanson CZ, Chen J, Cheng N, Ye RD (2009) Serum amyloid A induces G-CSF expression and neutrophilia via Toll-like receptor 2. Blood 113:429–437. doi:10.1182/blood-2008-03-139923

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K et al (2008) The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10:1349–1355. doi:10.1038/ncb1794

    Article  PubMed  CAS  Google Scholar 

  • Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E et al (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175:4320–4330

    PubMed  CAS  Google Scholar 

  • Johnson GB, Brunn GJ, Kodaira Y, Platt JL (2002) Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol 168:5233–5239

    PubMed  CAS  Google Scholar 

  • Jou I, Lee JH, Park SY, Yoon HJ, Joe EH, Park EJ (2006) Gangliosides trigger inflammatory responses via TLR4 in brain glia. Am J Pathol 168:1619–1630. doi:10.2353/ajpath.2006.050924

    Article  PubMed  CAS  Google Scholar 

  • Karanth S, Yang G, Yeh J, Richardson PM (2006) Nature of signals that initiate the immune response during Wallerian degeneration of peripheral nerves. Exp Neurol 202:161–166. doi:10.1016/j.expneurol.2006.05.024

    Article  PubMed  CAS  Google Scholar 

  • Kariko K, Ni H, Capodici J, Lamphier M, Weissman D (2004a) mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 279:12542–12550. doi:10.1074/jbc.M310175200

    Article  PubMed  CAS  Google Scholar 

  • Kariko K, Bhuyan P, Capodici J, Weissman D (2004b) Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol 172:6545–6549

    PubMed  CAS  Google Scholar 

  • Kielian T, Barry B, Hickey WF (2001) CXC chemokine receptor-2 ligands are required for neutrophil-mediated host defense in experimental brain abscesses. J Immunol 166:4634–4643

    PubMed  CAS  Google Scholar 

  • Kielian T, Mayes P, Kielian M (2002) Characterization of microglial responses to Staphylococcus aureus: effects on cytokine, costimulatory molecule, and Toll-like receptor expression. J Neuroimmunol 130:86–99

    Article  PubMed  CAS  Google Scholar 

  • Kielian T, Esen N, Bearden ED (2005a) Toll-like receptor 2 (TLR2) is pivotal for recognition of S. aureus peptidoglycan but not intact bacteria by microglia. Glia 49:567–576. doi:10.1002/glia.20144

    Article  PubMed  Google Scholar 

  • Kielian T, Haney A, Mayes PM, Garg S, Esen N (2005b) Toll-like receptor 2 modulates the proinflammatory milieu in Staphylococcus aureus-induced brain abscess. Infect Immun 73:7428–7435. doi:10.1128/IAI.73.11.7428-7435.2005

    Article  PubMed  CAS  Google Scholar 

  • Kigerl KA, Lai W, Rivest S, Hart RP, Satoskar AR, Popovich PG (2007) Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. J Neurochem 102:37–50. doi:10.1111/j.1471-4159.2007.04524.x

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Kim MA, Cho IH, Kim MS, Lee S, Jo EK et al (2007) A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 282:14975–14983. doi:10.1074/jbc.M607277200

    Article  PubMed  CAS  Google Scholar 

  • Kim D, You B, Jo EK, Han SK, Simon MI, Lee SJ (2010) NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain. Proc Natl Acad Sci U S A 107:14851–14856. doi:10.1073/pnas.1009926107

    Article  PubMed  CAS  Google Scholar 

  • Kim D, You B, Lim H, Lee SJ (2011) Toll-like receptor 2 contributes to chemokine gene expression and macrophage infiltration in the dorsal root ganglia after peripheral nerve injury. Mol Pain 7:74. doi:10.1186/1744-8069-7-74

    Article  PubMed  CAS  Google Scholar 

  • Kinsner A, Boveri M, Hareng L, Brown GC, Coecke S, Hartung T et al (2006) Highly purified lipoteichoic acid induced pro-inflammatory signalling in primary culture of rat microglia through Toll-like receptor 2: selective potentiation of nitric oxide production by muramyl dipeptide. J Neurochem 99:596–607. doi:10.1111/j.1471-4159.2006.04085.x

    Article  PubMed  CAS  Google Scholar 

  • Klein M, Obermaier B, Angele B, Pfister HW, Wagner H, Koedel U et al (2008) Innate immunity to pneumococcal infection of the central nervous system depends on toll-like receptor (TLR) 2 and TLR4. J Infect Dis 198:1028–1036. doi:10.1086/591626

    Article  PubMed  CAS  Google Scholar 

  • Koedel U, Angele B, Rupprecht T, Wagner H, Roggenkamp A, Pfister HW et al (2003) Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J Immunol 170:438–444

    PubMed  CAS  Google Scholar 

  • Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R et al (2004) Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci U S A 101:1315–1320. doi:10.1073/pnas.0308057100

    Article  PubMed  CAS  Google Scholar 

  • Laflamme N, Rivest S (2001) Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 15:155–163. doi:10.1096/fj.00-0339com

    Article  PubMed  CAS  Google Scholar 

  • Laflamme N, Soucy G, Rivest S (2001) Circulating cell wall components derived from gram-negative, not gram-positive, bacteria cause a profound induction of the gene-encoding Toll-like receptor 2 in the CNS. J Neurochem 79:648–657

    Article  PubMed  CAS  Google Scholar 

  • Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF et al (2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5:190–198. doi:10.1038/ni1028

    Article  PubMed  CAS  Google Scholar 

  • Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603–607. doi:10.1038/416603a

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Lee S (2002) Toll-like receptors and inflammation in the CNS. Curr Drug Targets Inflamm Allergy 1:181–191

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Jo EK, Choi SY, Oh SB, Park K, Kim JS et al (2006) Necrotic neuronal cells induce inflammatory Schwann cell activation via TLR2 and TLR3: implication in Wallerian degeneration. Biochem Biophys Res Commun 350:742–747. doi:10.1016/j.bbrc.2006.09.108

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Park C, Cho IH, Kim HY, Jo EK, Lee S et al (2007) Double-stranded RNA induces iNOS gene expression in Schwann cells, sensory neuronal death, and peripheral nerve demyelination. Glia 55:712–722. doi:10.1002/glia.20493

    Article  PubMed  Google Scholar 

  • Lehnardt S, Henneke P, Lien E, Kasper DL, Volpe JJ, Bechmann I et al (2006) A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J Immunol 177:583–592

    PubMed  CAS  Google Scholar 

  • Lehnardt S, Lehmann S, Kaul D, Tschimmel K, Hoffmann O, Cho S et al (2007) Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J Neuroimmunol 190:28–33. doi:10.1016/j.jneuroim.2007.07.023

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983

    Article  PubMed  CAS  Google Scholar 

  • Levy D, Hoke A, Zochodne DW (1999) Local expression of inducible nitric oxide synthase in an animal model of neuropathic pain. Neurosci Lett 260:207–209

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Yin Q, Zhong Q, Lv FL, Zhou Y, Li JQ et al (2012) Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflammation 9:46. doi:10.1186/1742-2094-9-46

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Li J, Chiu I, Wang Y, Sloane JA, Lu J et al (2006) Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. J Cell Biol 175:209–215. doi:10.1083/jcb.200606016

    Article  PubMed  CAS  Google Scholar 

  • Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM et al (2003) Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci U S A 100:1966–1971. doi:10.1073/pnas.0435928100

    Article  PubMed  CAS  Google Scholar 

  • Marchand F, Perretti M, McMahon SB (2005) Role of the immune system in chronic pain. Nat Rev Neurosci 6:521–532. doi:10.1038/nrn1700

    Article  PubMed  CAS  Google Scholar 

  • Massari P, Henneke P, Ho Y, Latz E, Golenbock DT, Wetzler LM (2002) Cutting edge: immune stimulation by neisserial porins is toll-like receptor 2 and MyD88 dependent. J Immunol 168:1533–1537

    PubMed  CAS  Google Scholar 

  • Mathisen GE, Johnson JP (1997) Brain abscess. Clin Infect Dis 25:763–779; quiz 80–81

    Google Scholar 

  • McMahon SB, Cafferty WB, Marchand F (2005) Immune and glial cell factors as pain mediators and modulators. Exp Neurol 192:444–462. doi:10.1016/j.expneurol.2004.11.001

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397. doi:10.1038/41131

    Article  PubMed  CAS  Google Scholar 

  • Meyer M, Matsuoka I, Wetmore C, Olson L, Thoenen H (1992) Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol 119:45–54

    Article  PubMed  CAS  Google Scholar 

  • Midwood K, Sacre S, Piccinini AM, Inglis J, Trebaul A, Chan E et al (2009) Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med 15:774–780. doi:10.1038/nm.1987

    Article  PubMed  CAS  Google Scholar 

  • Miller YI, Viriyakosol S, Binder CJ, Feramisco JR, Kirkland TN, Witztum JL (2003) Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J Biol Chem 278:1561–1568. doi:10.1074/jbc.M209634200

    Article  PubMed  CAS  Google Scholar 

  • Mishra BB, Mishra PK, Teale JM (2006) Expression and distribution of Toll-like receptors in the brain during murine neurocysticercosis. J Neuroimmunol 181:46–56. doi:10.1016/j.jneuroim.2006.07.019

    Article  PubMed  CAS  Google Scholar 

  • Mishra BB, Gundra UM, Teale JM (2008) Expression and distribution of Toll-like receptors 11-13 in the brain during murine neurocysticercosis. J Neuroinflammation 5:53. doi:10.1186/1742-2094-5-53

    Article  PubMed  CAS  Google Scholar 

  • Mogensen TH, Paludan SR, Kilian M, Ostergaard L (2006) Live Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis activate the inflammatory response through Toll-like receptors 2, 4, and 9 in species-specific patterns. J Leukoc Biol 80:267–277. doi:10.1189/jlb.1105626

    Article  PubMed  CAS  Google Scholar 

  • Morganti-Kossmann MC, Satgunaseelan L, Bye N, Kossmann T (2007) Modulation of immune response by head injury. Injury 38:1392–1400. doi:10.1016/j.injury.2007.10.005

    Article  PubMed  Google Scholar 

  • Murakami S, Iwaki D, Mitsuzawa H, Sano H, Takahashi H, Voelker DR et al (2002) Surfactant protein A inhibits peptidoglycan-induced tumor necrosis factor-alpha secretion in U937 cells and alveolar macrophages by direct interaction with toll-like receptor 2. J Biol Chem 277:6830–6837. doi:10.1074/jbc.M106671200

    Article  PubMed  CAS  Google Scholar 

  • Nichols JR, Aldrich AL, Mariani MM, Vidlak D, Esen N, Kielian T (2009) TLR2 deficiency leads to increased Th17 infiltrates in experimental brain abscesses. J Immunol 182:7119–7130. doi:10.4049/jimmunol.0802656

    Article  PubMed  CAS  Google Scholar 

  • Ohya M, Nishitani C, Sano H, Yamada C, Mitsuzawa H, Shimizu T et al (2006) Human pulmonary surfactant protein D binds the extracellular domains of Toll-like receptors 2 and 4 through the carbohydrate recognition domain by a mechanism different from its binding to phosphatidylinositol and lipopolysaccharide. Biochemistry 45:8657–8664. doi:10.1021/bi060176z

    Article  PubMed  CAS  Google Scholar 

  • Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J et al (2001) The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276:10229–10233. doi:10.1074/jbc.M100099200

    Article  PubMed  CAS  Google Scholar 

  • Oliveira RB, Ochoa MT, Sieling PA, Rea TH, Rambukkana A, Sarno EN et al (2003) Expression of Toll-like receptor 2 on human Schwann cells: a mechanism of nerve damage in leprosy. Infect Immun 71:1427–1433

    Article  PubMed  CAS  Google Scholar 

  • Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173:3916–3924

    PubMed  CAS  Google Scholar 

  • Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A et al (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377. doi:10.1074/jbc.M306793200

    Article  PubMed  CAS  Google Scholar 

  • Park C, Lee S, Cho IH, Lee HK, Kim D, Choi SY et al (2006) TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression. Glia 53:248–256. doi:10.1002/glia.20278

    Article  PubMed  Google Scholar 

  • Park C, Cho IH, Kim D, Jo EK, Choi SY, Oh SB et al (2008) Toll-like receptor 2 contributes to glial cell activation and heme oxygenase-1 expression in traumatic brain injury. Neurosci Lett 431:123–128. doi:10.1016/j.neulet.2007.11.057

    Article  PubMed  CAS  Google Scholar 

  • Passaquin AC, Schreier WA, de Vellis J (1994) Gene expression in astrocytes is affected by subculture. Int J Dev Neurosci 12:363–372

    Article  PubMed  CAS  Google Scholar 

  • Popovich P, McTigue D (2009) Damage control in the nervous system: beware the immune system in spinal cord injury. Nat Med 15:736–737. doi:10.1038/nm0709-736

    Article  PubMed  CAS  Google Scholar 

  • Prehaud C, Megret F, Lafage M, Lafon M (2005) Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J Virol 79:12893–12904. doi:10.1128/JVI.79.20.12893-12904.2005

    Article  PubMed  CAS  Google Scholar 

  • Pridmore AC, Wyllie DH, Abdillahi F, Steeghs L, van der Ley P, Dower SK et al (2001) A lipopolysaccharide-deficient mutant of Neisseria meningitidis elicits attenuated cytokine release by human macrophages and signals via toll-like receptor (TLR) 2 but not via TLR4/MD2. J Infect Dis 183:89–96. doi:10.1086/317647

    Article  PubMed  CAS  Google Scholar 

  • Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S (2004) Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 15:415–436. doi:10.1016/j.nbd.2003.11.015

    Article  PubMed  Google Scholar 

  • Qi J, Buzas K, Fan H, Cohen JI, Wang K, Mont E et al (2011) Painful pathways induced by TLR stimulation of dorsal root ganglion neurons. J Immunol 186:6417–6426. doi:10.4049/jimmunol.1001241

    Article  PubMed  CAS  Google Scholar 

  • Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM et al (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70:374–383. doi:10.1002/ana.22455

    Article  PubMed  Google Scholar 

  • Reinert LS, Harder L, Holm CK, Iversen MB, Horan KA, Dagnaes-Hansen F et al (2012) TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J Clin Invest 122:1368–1376. doi:10.1172/JCI60893

    Article  PubMed  CAS  Google Scholar 

  • Roelofs MF, Boelens WC, Joosten LA, Abdollahi-Roodsaz S, Geurts J, Wunderink LU et al (2006) Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J Immunol 176:7021–7027

    PubMed  CAS  Google Scholar 

  • Sansing LH, Harris TH, Welsh FA, Kasner SE, Hunter CA, Kariko K (2011) Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage. Ann Neurol 70:646–656. doi:10.1002/ana.22528

    Article  PubMed  CAS  Google Scholar 

  • Schaefer L, Babelova A, Kiss E, Hausser HJ, Baliova M, Krzyzankova M et al (2005) The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest 115:2223–2233. doi:10.1172/JCI23755

    Article  PubMed  CAS  Google Scholar 

  • Schuchat A, Robinson K, Wenger JD, Harrison LH, Farley M, Reingold AL et al (1997) Bacterial meningitis in the United States in 1995. Active Surveillance Team. N Engl J Med 337:970–976. doi:10.1056/NEJM199710023371404

    Article  PubMed  CAS  Google Scholar 

  • Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ (1999) Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 274:17406–17409

    Article  PubMed  CAS  Google Scholar 

  • Scumpia PO, Kelly KM, Reeves WH, Stevens BR (2005) Double-stranded RNA signals antiviral and inflammatory programs and dysfunctional glutamate transport in TLR3-expressing astrocytes. Glia 52:153–162. doi:10.1002/glia.20234

    Article  PubMed  Google Scholar 

  • Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025. doi:10.1172/JCI28898

    Article  PubMed  CAS  Google Scholar 

  • Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K et al (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777–1782

    Article  PubMed  CAS  Google Scholar 

  • Sloane JA, Batt C, Ma Y, Harris ZM, Trapp B, Vartanian T (2010) Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc Natl Acad Sci U S A 107:11555–11560. doi:10.1073/pnas.1006496107

    Article  PubMed  CAS  Google Scholar 

  • Smiley ST, King JA, Hancock WW (2001) Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 167:2887–2894

    PubMed  CAS  Google Scholar 

  • Smith GM, Rabinovsky ED, McManaman JL, Shine HD (1993) Temporal and spatial expression of ciliary neurotrophic factor after peripheral nerve injury. Exp Neurol 121:239–247. doi:10.1006/exnr.1993.1091

    Article  PubMed  CAS  Google Scholar 

  • Sorensen LN, Reinert LS, Malmgaard L, Bartholdy C, Thomsen AR, Paludan SR (2008) TLR2 and TLR9 synergistically control herpes simplex virus infection in the brain. J Immunol 181:8604–8612

    PubMed  CAS  Google Scholar 

  • Stenzel W, Soltek S, Sanchez-Ruiz M, Akira S, Miletic H, Schluter D et al (2008) Both TLR2 and TLR4 are required for the effective immune response in Staphylococcus aureus-induced experimental murine brain abscess. Am J Pathol 172:132–145. doi:10.2353/ajpath.2008.070567

    Article  PubMed  CAS  Google Scholar 

  • Stoll G, Jander S, Myers RR (2002) Degeneration and regeneration of the peripheral nervous system: from Augustus Waller’s observations to neuroinflammation. J Peripher Nerv Syst 7:13–27

    Article  PubMed  Google Scholar 

  • Takahashi M, Kawaguchi M, Shimada K, Konishi N, Furuya H, Nakashima T (2004) Cyclooxygenase-2 expression in Schwann cells and macrophages in the sciatic nerve after single spinal nerve injury in rats. Neurosci Lett 363:203–206. doi:10.1016/j.neulet.2004.03.040

    Article  PubMed  CAS  Google Scholar 

  • Tallini NY, Stoner LC (2002) Amiloride-sensitive sodium current in everted Ambystoma initial collecting tubule: short-term insulin effects. Am J Physiol Cell Physiol 283:C1171–C1181. doi:10.1152/ajpcell.00606.2001

    Article  PubMed  CAS  Google Scholar 

  • Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG et al (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 104:13798–13803. doi:10.1073/pnas.0702553104

    Article  PubMed  CAS  Google Scholar 

  • Tanga FY, Raghavendra V, DeLeo JA (2004) Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain. Neurochem Int 45:397–407. doi:10.1016/j.neuint.2003.06.002

    Article  PubMed  CAS  Google Scholar 

  • Tanga FY, Nutile-McMenemy N, DeLeo JA (2005) The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci U S A 102:5856–5861. doi:10.1073/pnas.0501634102

    Article  PubMed  CAS  Google Scholar 

  • Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75:15–26. doi:10.3171/jns.1991.75.1.0015

    Article  PubMed  CAS  Google Scholar 

  • Taylor DL, Pirianov G, Holland S, McGinnity CJ, Norman AL, Reali C et al (2010) Attenuation of proliferation in oligodendrocyte precursor cells by activated microglia. J Neurosci Res 88:1632–1644. doi:10.1002/jnr.22335

    Article  PubMed  CAS  Google Scholar 

  • Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T et al (2002) Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195:99–111

    Article  PubMed  CAS  Google Scholar 

  • Tofaris GK, Patterson PH, Jessen KR, Mirsky R (2002) Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J Neurosci 22:6696–6703. doi:20026699

    Google Scholar 

  • Uematsu S, Akira S (2006) Toll-like receptors and innate immunity. J Mol Med (Berl) 84:712–725. doi:10.1007/s00109-006-0084-y

    Article  CAS  Google Scholar 

  • Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M et al (1999) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401:811–815. doi:10.1038/44605

    Article  PubMed  CAS  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H et al (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276:31332–31339. doi:10.1074/jbc.M103217200

    Article  PubMed  CAS  Google Scholar 

  • Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P et al (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277:20847–20853. doi:10.1074/jbc.M200425200

    Article  PubMed  CAS  Google Scholar 

  • Vidlak D, Mariani MM, Aldrich A, Liu S, Kielian T (2011) Roles of Toll-like receptor 2 (TLR2) and superantigens on adaptive immune responses during CNS staphylococcal infection. Brain Behav Immun 25:905–914. doi:10.1016/j.bbi.2010.09.016

    Article  PubMed  CAS  Google Scholar 

  • Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13:1042–1049. doi:10.1038/nm1638

    Article  PubMed  CAS  Google Scholar 

  • Vollmer J, Tluk S, Schmitz C, Hamm S, Jurk M, Forsbach A et al (2005) Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med 202:1575–1585. doi:10.1084/jem.20051696

    Article  PubMed  CAS  Google Scholar 

  • Wagner R, Myers RR (1996) Schwann cells produce tumor necrosis factor alpha: expression in injured and non-injured nerves. Neuroscience 73:625–629

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366–1373. doi:10.1038/nm1140

    Article  PubMed  CAS  Google Scholar 

  • Wang YC, Lin S, Yang QW (2011) Toll-like receptors in cerebral ischemic inflammatory injury. J Neuroinflammation 8:134. doi:10.1186/1742-2094-8-134

    Article  PubMed  CAS  Google Scholar 

  • Williams MJ, Rodriguez A, Kimbrell DA, Eldon ED (1997) The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. EMBO J 16:6120–6130. doi:10.1093/emboj/16.20.6120

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Chen Q, Su SB, Zhang P, Kurosaka K, Caspi RR et al (2008) Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med 205:79–90. doi:10.1084/jem.20062027

    Article  PubMed  CAS  Google Scholar 

  • Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS et al (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308:1626–1629. doi:10.1126/science.1109893

    Article  PubMed  CAS  Google Scholar 

  • Yoon HJ, Jeon SB, Kim IH, Park EJ (2008a) Regulation of TLR2 expression by prostaglandins in brain glia. J Immunol 180:8400–8409

    PubMed  CAS  Google Scholar 

  • Yoon HJ, Jeon SB, Suk K, Choi DK, Hong YJ, Park EJ (2008b) Contribution of TLR2 to the initiation of ganglioside-triggered inflammatory signaling. Mol Cells 25:99–104

    PubMed  CAS  Google Scholar 

  • Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D (1999) Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 163:1–5

    PubMed  CAS  Google Scholar 

  • Yu ZQ, Zha JH (2012) Genetic ablation of toll-like receptor 2 reduces secondary brain injury caused by cortical contusion in mice. Ann Clin Lab Sci 42:26–33

    PubMed  Google Scholar 

  • Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA et al (2004) A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303:1522–1526. doi:10.1126/science.1094351

    Article  PubMed  CAS  Google Scholar 

  • Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P et al (2007) TLR3 deficiency in patients with herpes simplex encephalitis. Science 317:1522–1527. doi:10.1126/science.1139522

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Liu F, Yan M, Ji H, Hu L, Li X et al (2010) Peroxisome proliferator-activated receptor-gamma agonists suppress iNOS expression induced by LPS in rat primary Schwann cells. J Neuroimmunol 218:36–47. doi:10.1016/j.jneuroim.2009.10.016

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Zhang ZY, Wu Y, Schluesener HJ (2012) Immunolocalization of Toll-like receptors 2 and 4 as well as their endogenous ligand, heat shock protein 70, in rat traumatic brain injury. Neuroimmunomodulation 19:10–19. doi:10.1159/000326771

    Article  PubMed  CAS  Google Scholar 

  • Ziebell JM, Morganti-Kossmann MC (2010) Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 7:22–30. doi:10.1016/j.nurt.2009.10.016

    Article  PubMed  CAS  Google Scholar 

  • Ziegler G, Harhausen D, Schepers C, Hoffmann O, Rohr C, Prinz V et al (2007) TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem Biophys Res Commun 359:574–579. doi:10.1016/j.bbrc.2007.05.157

    Article  PubMed  CAS  Google Scholar 

  • Ziegler G, Freyer D, Harhausen D, Khojasteh U, Nietfeld W, Trendelenburg G (2011) Blocking TLR2 in vivo protects against accumulation of inflammatory cells and neuronal injury in experimental stroke. J Cereb Blood Flow Metab 31:757–766. doi:10.1038/jcbfm.2010.161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2011-0027667, 2011-0000934, and 2010-0002149).

Conflict of interest statement Sung Joong Lee declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Joong Lee Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, S.J. (2013). Toll-Like Receptors and Neuroinflammation. In: Suzumura, A., Ikenaka, K. (eds) Neuron-Glia Interaction in Neuroinflammation. Advances in Neurobiology, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8313-7_9

Download citation

Publish with us

Policies and ethics