Skip to main content

Nucleolar Signaling Determines Cell Fate: The RP-Mdm2-p53 Axis Fine-Tunes Cellular Homeostasis

  • Chapter
  • First Online:
Nuclear Signaling Pathways and Targeting Transcription in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1760 Accesses

Abstract

One of the main functions of the nucleolus is to conduct ribosome biogenesis, which is the most energy-consuming process in growing cells. Not surprisingly, this process is highly regulated during cellular proliferation when energy consumption levels are relatively high. Various stresses such as genotoxic, osmotic and oncogenic stress as well as metabolic fluctuations converge at the nucleolus and impinge on ribosome biogenesis. Depending on the severity of the insult, nucleolar stress signaling can induce cell cycle arrest, apoptosis or metabolic adaptation. Although mechanisms associated with the nucleolar stress response are complex and remain to be fully elucidated, many of the pathways that convert stress signals into a cellular response link the nucleolus to the tumor suppressor and guardian of the genome known as p53. It is now known that the activation of p53 upon nucleolar signaling occurs predominantly through the ribosomal protein (RP)-Mdm2-p53 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24(11):437–440

    Article  PubMed  CAS  Google Scholar 

  2. Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8(7):574–585

    Article  PubMed  CAS  Google Scholar 

  3. Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J (2003) 5S RRNA: structure and interactions. Biochem J 371(Pt 3):641–651

    Article  PubMed  CAS  Google Scholar 

  4. Kressler D, Hurt E, Bassler J (2010) Driving ribosome assembly. Biochim Biophys Acta 1803(6):673–683

    Article  PubMed  CAS  Google Scholar 

  5. Ahmad Y, Boisvert FM, Gregor P, Cobley A, Lamond AI (2009) NOPdb: nucleolar proteome database – 2008 update. Nucleic Acids Res 37(Database issue):D181–D184

    Article  PubMed  CAS  Google Scholar 

  6. Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI et al (2005) Nucleolar proteome dynamics. Nature 433(7021):77–83

    Article  PubMed  CAS  Google Scholar 

  7. Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H et al (2002) Directed proteomic analysis of the human nucleolus. Curr Biol 12(1):1–11

    Article  PubMed  Google Scholar 

  8. François-Michel B, Yasmeen A, Lamond AI (2011) The dynamic proteome of the nucleolus. In: Olson MOJ (ed) The nucleolus. Springer, New York, p 29

    Google Scholar 

  9. Boisvert FM, Lamond AI (2010) p53-Dependent subcellular proteome localization following DNA damage. Proteomics 10(22):4087–4097

    Article  PubMed  CAS  Google Scholar 

  10. Lam YW, Evans VC, Heesom KJ, Lamond AI, Matthews DA (2010) Proteomics analysis of the nucleolus in adenovirus-infected cells. Mol Cell Proteomics 9(1):117–130

    Article  PubMed  CAS  Google Scholar 

  11. Moore HM, Bai B, Boisvert FM, Latonen L, Rantanen V, Simpson JC et al (2011) Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol Cell Proteomics 10(10):M111 009241

    PubMed  Google Scholar 

  12. Schuhmacher M, Staege MS, Pajic A, Polack A, Weidle UH, Bornkamm GW et al (1999) Control of cell growth by c-Myc in the absence of cell division. Curr Biol 9(21):1255–1258

    Article  PubMed  CAS  Google Scholar 

  13. Iritani BM, Eisenman RN (1999) c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc Natl Acad Sci USA 96(23):13180–13185

    Article  PubMed  CAS  Google Scholar 

  14. Schuhmacher M, Kohlhuber F, Holzel M, Kaiser C, Burtscher H, Jarsch M et al (2001) The transcriptional program of a human B cell line in response to Myc. Nucleic Acids Res 29(2):397–406

    Article  PubMed  CAS  Google Scholar 

  15. Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M et al (2002) Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297(5578):102–104

    Article  PubMed  CAS  Google Scholar 

  16. Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S et al (2004) MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431(7012):1112–1117

    Article  PubMed  CAS  Google Scholar 

  17. Wu CH, van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW (2007) Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci USA 104(32):13028–13033

    Article  PubMed  CAS  Google Scholar 

  18. Felsher DW, Bishop JM (1999) Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 4(2):199–207

    Article  PubMed  CAS  Google Scholar 

  19. Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6(8):635–645

    Article  PubMed  CAS  Google Scholar 

  20. Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN et al (2005) c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 7(3):311–318

    Article  PubMed  CAS  Google Scholar 

  21. Gomez-Roman N, Grandori C, Eisenman RN, White RJ (2003) Direct activation of RNA polymerase III transcription by c-Myc. Nature 421(6920):290–294

    Article  PubMed  CAS  Google Scholar 

  22. Coller HA, Grandori C, Tamayo P, Colbert T, Lander ES, Eisenman RN et al (2000) Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci USA 97(7):3260–3265

    Article  PubMed  CAS  Google Scholar 

  23. Guo QM, Malek RL, Kim S, Chiao C, He M, Ruffy M et al (2000) Identification of c-myc responsive genes using rat cDNA microarray. Cancer Res 60(21):5922–5928

    PubMed  CAS  Google Scholar 

  24. Menssen A, Hermeking H (2002) Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Natl Acad Sci USA 99(9):6274–6279

    Article  PubMed  CAS  Google Scholar 

  25. Boon K, Caron HN, van Asperen R, Valentijn L, Hermus MC, van Sluis P et al (2001) N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J 20(6):1383–1393

    Article  PubMed  CAS  Google Scholar 

  26. Orian A, van Steensel B, Delrow J, Bussemaker HJ, Li L, Sawado T et al (2003) Genomic binding by the drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev 17(9):1101–1114

    Article  PubMed  CAS  Google Scholar 

  27. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J et al (2003) Genomic targets of the human c-Myc protein. Genes Dev 17(9):1115–1129

    Article  PubMed  CAS  Google Scholar 

  28. Watson JD, Oster SK, Shago M, Khosravi F, Penn LZ (2002) Identifying genes regulated in a Myc-dependent manner. J Biol Chem 277(40):36921–36930

    Article  PubMed  CAS  Google Scholar 

  29. Li J, Sejas DP, Burma S, Chen DJ, Pang Q (2007) Nucleophosmin suppresses oncogene-induced apoptosis and senescence and enhances oncogenic cooperation in cells with genomic instability. Carcinogenesis 28(6):1163–1170

    Article  PubMed  CAS  Google Scholar 

  30. Wu CH, Sahoo D, Arvanitis C, Bradon N, Dill DL, Felsher DW (2008) Combined analysis of murine and human microarrays and ChIP analysis reveals genes associated with the ability of MYC to maintain tumorigenesis. PLoS Genet 4(6):e1000090

    Article  PubMed  CAS  Google Scholar 

  31. Barna M, Pusic A, Zollo O, Costa M, Kondrashov N, Rego E et al (2008) Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456(7224):971–975

    Article  PubMed  CAS  Google Scholar 

  32. Henry JL, Coggin DL, King CR (1993) High-level expression of the ribosomal protein L19 in human breast tumors that overexpress erbB-2. Cancer Res 53(6):1403–1408

    PubMed  CAS  Google Scholar 

  33. Vaarala MH, Porvari KS, Kyllonen AP, Mustonen MV, Lukkarinen O, Vihko PT (1998) Several genes encoding ribosomal proteins are over-expressed in prostate-cancer cell lines: confirmation of L7a and L37 over-expression in prostate-cancer tissue samples. Int J Cancer 78(1):27–32

    Article  PubMed  CAS  Google Scholar 

  34. Wang Q, Yang C, Zhou J, Wang X, Wu M, Liu Z (2001) Cloning and characterization of full-length human ribosomal protein L15 cDNA which was overexpressed in esophageal cancer. Gene 263(1–2):205–209

    Article  PubMed  CAS  Google Scholar 

  35. Kim JH, You KR, Kim IH, Cho BH, Kim CY, Kim DG (2004) Over-expression of the ribosomal protein L36a gene is associated with cellular proliferation in hepatocellular carcinoma. Hepatology 39(1):129–138

    Article  PubMed  CAS  Google Scholar 

  36. Dai MS, Arnold H, Sun XX, Sears R, Lu H (2007) Inhibition of c-Myc activity by ribosomal protein L11. EMBO J 26(14):3332–3345

    Article  PubMed  CAS  Google Scholar 

  37. Dai MS, Sears R, Lu H (2007) Feedback regulation of c-Myc by ribosomal protein L11. Cell Cycle 6(22):2735–2741

    Article  PubMed  CAS  Google Scholar 

  38. Zhang Y, Lu H (2009) Signaling to p53: ribosomal proteins find their way. Cancer Cell 16(5):369–377

    Article  PubMed  CAS  Google Scholar 

  39. Hsieh AC, Truitt ML, Ruggero D (2011) Oncogenic AKTivation of translation as a therapeutic target. Br J Cancer 105(3):329–336

    Article  PubMed  CAS  Google Scholar 

  40. Levy S, Avni D, Hariharan N, Perry RP, Meyuhas O (1991) Oligopyrimidine tract at the 5′ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc Natl Acad Sci USA 88(8):3319–3323

    Article  PubMed  CAS  Google Scholar 

  41. Iadevaia V, Zhang Z, Jan E, Proud CG (2012) MTOR signaling regulates the processing of pre-rRNA in human cells. Nucleic Acids Res 40(6):2527–2539

    Article  PubMed  CAS  Google Scholar 

  42. Mayer C, Zhao J, Yuan X, Grummt I (2004) MTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev 18(4):423–434

    Article  PubMed  CAS  Google Scholar 

  43. Chan JC, Hannan KM, Riddell K, Ng PY, Peck A, Lee RS et al (2011) AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer. Sci Signal 4(188):ra56

    Article  PubMed  CAS  Google Scholar 

  44. Kapeli K, Hurlin PJ (2011) Differential regulation of N-Myc and c-Myc synthesis, degradation, and transcriptional activity by the Ras/mitogen-activated protein kinase pathway. J Biol Chem 286(44):38498–38508

    Article  PubMed  CAS  Google Scholar 

  45. Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36(6):320–328

    Article  PubMed  CAS  Google Scholar 

  46. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J et al (2007) RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 282(19):14056–14064

    Article  PubMed  CAS  Google Scholar 

  47. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP (1998) Pten is essential for embryonic development and tumour suppression. Nat Genet 19(4):348–355

    Article  PubMed  Google Scholar 

  48. Suzuki A, de la Pompa JL, Stambolic V, Elia AJ, Sasaki T, del Barco BI et al (1998) High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol 8(21):1169–1178

    Article  PubMed  CAS  Google Scholar 

  49. Harbour JW, Dean DC (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14(19):2393–2409

    Article  PubMed  CAS  Google Scholar 

  50. Cavanaugh AH, Hempel WM, Taylor LJ, Rogalsky V, Todorov G, Rothblum LI (1995) Activity of RNA polymerase I transcription factor UBF blocked by Rb gene product. Nature 374(6518):177–180

    Article  PubMed  CAS  Google Scholar 

  51. Hannan KM, Kennedy BK, Cavanaugh AH, Hannan RD, Hirschler-Laszkiewicz I, Jefferson LS et al (2000) RNA polymerase I transcription in confluent cells: Rb downregulates rDNA transcription during confluence-induced cell cycle arrest. Oncogene 19(31):3487–3497

    Article  PubMed  CAS  Google Scholar 

  52. Zhai W, Comai L (2000) Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol Cell Biol 20(16):5930–5938

    Article  PubMed  CAS  Google Scholar 

  53. Ruggero D, Pandolfi PP (2003) Does the ribosome translate cancer? Nat Rev Cancer 3(3):179–192

    Article  PubMed  CAS  Google Scholar 

  54. Cairns CA, White RJ (1998) p53 is a general repressor of RNA polymerase III transcription. EMBO J 17(11):3112–3123

    Article  PubMed  CAS  Google Scholar 

  55. Boocock GR, Morrison JA, Popovic M, Richards N, Ellis L, Durie PR et al (2003) Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet 33(1):97–101

    Article  PubMed  CAS  Google Scholar 

  56. Ganapathi KA, Austin KM, Lee CS, Dias A, Malsch MM, Reed R et al (2007) The human Shwachman-Diamond syndrome protein, SBDS, associates with ribosomal RNA. Blood 110(5):1458–1465

    Article  PubMed  CAS  Google Scholar 

  57. Freed EF, Bleichert F, Dutca LM, Baserga SJ (2010) When ribosomes go bad: diseases of ribosome biogenesis. Mol Biosyst 6(3):481–493

    Article  PubMed  CAS  Google Scholar 

  58. Donadieu J, Leblanc T, Bader Meunier B, Barkaoui M, Fenneteau O, Bertrand Y et al (2005) Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French severe chronic neutropenia study group. Haematologica 90(1):45–53

    PubMed  Google Scholar 

  59. Alter BP, Giri N, Savage SA, Rosenberg PS (2009) Cancer in dyskeratosis congenita. Blood 113(26):6549–6557

    Article  PubMed  CAS  Google Scholar 

  60. Gazda HT, Grabowska A, Merida-Long LB, Latawiec E, Schneider HE, Lipton JM et al (2006) Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. Am J Hum Genet 79(6):1110–1118

    Article  PubMed  CAS  Google Scholar 

  61. Cmejla R, Cmejlova J, Handrkova H, Petrak J, Pospisilova D (2007) Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan anemia. Hum Mutat 28(12):1178–1182

    Article  PubMed  CAS  Google Scholar 

  62. Farrar JE, Nater M, Caywood E, McDevitt MA, Kowalski J, Takemoto CM et al (2008) Abnormalities of the large ribosomal subunit protein, Rpl35a, in Diamond-Blackfan anemia. Blood 112(5):1582–1592

    Article  PubMed  CAS  Google Scholar 

  63. Gazda HT, Sheen MR, Vlachos A, Choesmel V, O’Donohue MF, Schneider H et al (2008) Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet 83(6):769–780

    Article  PubMed  CAS  Google Scholar 

  64. Choesmel V, Bacqueville D, Rouquette J, Noaillac-Depeyre J, Fribourg S, Cretien A et al (2007) Impaired ribosome biogenesis in Diamond-Blackfan anemia. Blood 109(3): 1275–1283

    Article  PubMed  CAS  Google Scholar 

  65. Robledo S, Idol RA, Crimmins DL, Ladenson JH, Mason PJ, Bessler M (2008) The role of human ribosomal proteins in the maturation of rRNA and ribosome production. RNA 14(9):1918–1929

    Article  PubMed  CAS  Google Scholar 

  66. Vardiman JW, Harris NL, Brunning RD (2002) The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100(7):2292–2302

    Article  PubMed  CAS  Google Scholar 

  67. Bernstein KA, Gallagher JE, Mitchell BM, Granneman S, Baserga SJ (2004) The small-subunit processome is a ribosome assembly intermediate. Eukaryot Cell 3(6):1619–1626

    Article  PubMed  CAS  Google Scholar 

  68. Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N et al (2008) Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451(7176):335–339

    Article  PubMed  CAS  Google Scholar 

  69. Jill D, Sara JE, Amanda JG, Michael JD, Stacie KL, Cynthia AB et al (1996) Positional cloning of a gene involved in the pathogenesis of Treacher Collins Syndrome. The Treacher Collins Syndrome Collaborative Group. Nat Genet, 12(2):130–136

    Google Scholar 

  70. Valdez BC, Henning D, So RB, Dixon J, Dixon MJ (2004) The treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor. Proc Natl Acad Sci USA 101(29):10709–10714

    Article  PubMed  CAS  Google Scholar 

  71. Ganapathi KA, Shimamura A (2008) Ribosomal dysfunction and inherited marrow failure. Br J Haematol 141(3):376–387

    Article  PubMed  CAS  Google Scholar 

  72. Ridanpaa M, van Eenennaam H, Pelin K, Chadwick R, Johnson C, Yuan B et al (2001) Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 104(2):195–203

    Article  PubMed  CAS  Google Scholar 

  73. Taskinen M, Ranki A, Pukkala E, Jeskanen L, Kaitila I, Makitie O (2008) Extended follow-up of the Finnish cartilage-hair hypoplasia cohort confirms high incidence of non-Hodgkin lymphoma and basal cell carcinoma. Am J Med Genet Part A 146A(18):2370–2375

    Article  PubMed  Google Scholar 

  74. Kirwan M, Dokal I (2008) Dyskeratosis congenita: a genetic disorder of many faces. Clin Genet 73(2):103–112

    Article  PubMed  CAS  Google Scholar 

  75. Watson KL, Konrad KD, Woods DF, Bryant PJ (1992) Drosophila homolog of the human S6 ribosomal protein is required for tumor suppression in the hematopoietic system. Proc Natl Acad Sci USA 89(23):11302–11306

    Article  PubMed  CAS  Google Scholar 

  76. Amsterdam A, Sadler KC, Lai K, Farrington S, Bronson RT, Lees JA et al (2004) Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol 2(5):E139

    Article  PubMed  Google Scholar 

  77. MacInnes AW, Amsterdam A, Whittaker CA, Hopkins N, Lees JA (2008) Loss of p53 synthesis in zebrafish tumors with ribosomal protein gene mutations. Proc Natl Acad Sci USA 105(30):10408–10413

    Article  PubMed  CAS  Google Scholar 

  78. Ruggero D, Grisendi S, Piazza F, Rego E, Mari F, Rao PH et al (2003) Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 299(5604):259–262

    Article  PubMed  CAS  Google Scholar 

  79. Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K et al (2005) Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437(7055):147–153

    Article  PubMed  CAS  Google Scholar 

  80. Montanaro L, Trere D, Derenzini M (2008) Nucleolus, ribosomes, and cancer. Am J Pathol 173(2):301–310

    Article  PubMed  CAS  Google Scholar 

  81. Fumagalli S, Thomas G (2011) The role of p53 in ribosomopathies. Semin Hematol 48(2):97–105

    Article  PubMed  CAS  Google Scholar 

  82. Lane D, Levine A (2010) p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2(12):a000893

    Article  PubMed  CAS  Google Scholar 

  83. Deisenroth C, Zhang Y (2010) Ribosome biogenesis surveillance: probing the ribosomal protein-Mdm2-p53 pathway. Oncogene 29(30):4253–4260

    Article  PubMed  CAS  Google Scholar 

  84. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 Mutations in human cancers. Science 253(5015):49–53

    Article  PubMed  CAS  Google Scholar 

  85. Robles AI, Harris CC (2010) Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol 2(3):a001016

    Article  PubMed  CAS  Google Scholar 

  86. Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1(5):a001883

    Article  PubMed  CAS  Google Scholar 

  87. Meek DW, Anderson CW (2009) Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1(6):a000950

    Article  PubMed  CAS  Google Scholar 

  88. Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137(4):609–622

    Article  PubMed  CAS  Google Scholar 

  89. Shieh SY, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91(3):325–334

    Article  PubMed  CAS  Google Scholar 

  90. Shinozaki T, Nota A, Taya Y, Okamoto K (2003) Functional role of Mdm2 phosphorylation by ATR in attenuation of p53 nuclear export. Oncogene 22(55):8870–8880

    Article  PubMed  CAS  Google Scholar 

  91. Sherr CJ (2006) Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6(9):663–673

    Article  PubMed  CAS  Google Scholar 

  92. Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90(4):595–606

    Article  PubMed  CAS  Google Scholar 

  93. Ito A, Lai CH, Zhao X, Saito S, Hamilton MH, Appella E et al (2001) p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J 20(6):1331–1340

    Article  PubMed  CAS  Google Scholar 

  94. Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS et al (2006) Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24(6): 841–851

    Article  PubMed  CAS  Google Scholar 

  95. Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24(6):827–839

    Article  PubMed  CAS  Google Scholar 

  96. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B (1993) Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362(6423):857–860

    Article  PubMed  CAS  Google Scholar 

  97. Meek DW, Knippschild U (2003) Posttranslational modification of MDM2. Mol Cancer Res 1(14):1017–1026

    PubMed  CAS  Google Scholar 

  98. Marechal V, Elenbaas B, Piette J, Nicolas JC, Levine AJ (1994) The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol Cell Biol 14(11):7414–7420

    PubMed  CAS  Google Scholar 

  99. Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH (2003) Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3(6):577–587

    Article  PubMed  CAS  Google Scholar 

  100. Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA et al (2003) Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 23(23):8902–8912

    Article  PubMed  CAS  Google Scholar 

  101. Dai MS, Lu H (2004) Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 279(43):44475–44482

    Article  PubMed  CAS  Google Scholar 

  102. Dai MS, Zeng SX, Jin Y, Sun XX, David L, Lu H (2004) Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol 24(17):7654–7668

    Article  PubMed  CAS  Google Scholar 

  103. Jin A, Itahana K, O’Keefe K, Zhang Y (2004) Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 24(17):7669–7680

    Article  PubMed  CAS  Google Scholar 

  104. Fumagalli S, Di Cara A, Neb-Gulati A, Natt F, Schwemberger S, Hall J et al (2009) Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol 11(4):501–508

    Article  PubMed  CAS  Google Scholar 

  105. Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M (2008) Mdm2 Regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol Cell 32(2):180–189

    Article  PubMed  CAS  Google Scholar 

  106. Yadavilli S, Mayo LD, Higgins M, Lain S, Hegde V, Deutsch WA (2009) Ribosomal protein S3: a multi-functional protein that interacts with both p53 and MDM2 through its KH domain. DNA Repair (Amst) 8(10):1215–1224

    Article  CAS  Google Scholar 

  107. Chen D, Zhang Z, Li M, Wang W, Li Y, Rayburn ER et al (2007) Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene 26(35):5029–5037

    Article  PubMed  CAS  Google Scholar 

  108. Zhu Y, Poyurovsky MV, Li Y, Biderman L, Stahl J, Jacq X et al (2009) Ribosomal protein S7 is both a regulator and a substrate of MDM2. Mol Cell 35(3):316–326

    Article  PubMed  CAS  Google Scholar 

  109. Zhou X, Hao Q, Liao J, Zhang Q, Lu H (2013) Ribosomal protein S14 unties the MDM2-p53 loop upon ribosomal stress. Oncogene 32(3):388–396

    Google Scholar 

  110. Zhang X, Wang W, Wang H, Wang MH, Xu W, Zhang R (2013) Identification of ribosomal protein S25 (RPS25)-MDM2-p53 regulatory feedback loop. Oncogene 32(22):2782–2791

    Google Scholar 

  111. Xiong X, Zhao Y, He H, Sun Y (2011) Ribosomal protein S27-like and S27 interplay with p53-MDM2 axis as a target, a substrate and a regulator. Oncogene 30(15):1798–1811

    Article  PubMed  CAS  Google Scholar 

  112. He H, Sun Y (2007) Ribosomal protein S27L is a direct p53 target that regulates apoptosis. Oncogene 26(19):2707–2716

    Article  PubMed  CAS  Google Scholar 

  113. Li J, Tan J, Zhuang L, Banerjee B, Yang X, Chau JF et al (2007) Ribosomal protein S27-like, a p53-inducible modulator of cell fate in response to genotoxic stress. Cancer Res 67(23):11317–11326

    Article  PubMed  CAS  Google Scholar 

  114. Gu J, Kawai H, Nie L, Kitao H, Wiederschain D, Jochemsen AG et al (2002) Mutual dependence of MDM2 and MDMX in their functional inactivation of p53. J Biol Chem 277(22):19251–19254

    Article  PubMed  CAS  Google Scholar 

  115. Gilkes DM, Chen L, Chen J (2006) MDMX regulation of p53 response to ribosomal stress. EMBO J 25(23):5614–5625

    Article  PubMed  CAS  Google Scholar 

  116. Sasaki M, Kawahara K, Nishio M, Mimori K, Kogo R, Hamada K et al (2011) Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat Med 17(8):944–951

    Article  PubMed  CAS  Google Scholar 

  117. Kumazawa T, Nishimura K, Kuroda T, Ono W, Yamaguchi C, Katagiri N et al (2011) Novel nucleolar pathway connecting intracellular energy status with p53 activation. J Biol Chem 286(23):20861–20869

    Article  PubMed  CAS  Google Scholar 

  118. Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R et al (2003) Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 12(5):1151–1164

    Article  PubMed  CAS  Google Scholar 

  119. Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D et al (2004) Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5(5):465–475

    Article  PubMed  CAS  Google Scholar 

  120. Yu W, Qiu Z, Gao N, Wang L, Cui H, Qian Y et al (2011) PAK1IP1, a ribosomal stress-induced nucleolar protein, regulates cell proliferation via the p53-MDM2 loop. Nucleic Acids Res 39(6):2234–2248

    Article  PubMed  CAS  Google Scholar 

  121. Sundqvist A, Liu G, Mirsaliotis A, Xirodimas DP (2009) Regulation of nucleolar signalling to p53 through NEDDylation of L11. EMBO Rep 10(10):1132–1139

    Article  PubMed  CAS  Google Scholar 

  122. Mahata B, Sundqvist A, Xirodimas DP (2011) Recruitment of RPL11 at promoter sites of p53-regulated genes upon nucleolar stress through NEDD8 and in an Mdm2-dependent manner. Oncogene 31(25):3060–3071

    Article  PubMed  CAS  Google Scholar 

  123. Bartel F, Taubert H, Harris LC (2002) Alternative and aberrant splicing of MDM2 mRNA in human cancer. Cancer Cell 2(1):9–15

    Article  PubMed  CAS  Google Scholar 

  124. Schlott T, Reimer S, Jahns A, Ohlenbusch A, Ruschenburg I, Nagel H et al (1997) Point mutations and nucleotide insertions in the MDM2 zinc finger structure of human tumours. J Pathol 182(1):54–61

    Article  PubMed  CAS  Google Scholar 

  125. Lindstrom MS, Jin A, Deisenroth C, White Wolf G, Zhang Y (2007) Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation. Mol Cell Biol 27(3):1056–1068

    Article  PubMed  CAS  Google Scholar 

  126. Zhang Q, Xiao H, Chai SC, Hoang QQ, Lu H (2011) Hydrophilic residues are crucial for ribosomal protein L11 (RPL11) interaction with zinc finger domain of MDM2 and p53 protein activation. J Biol Chem 286(44):38264–38274

    Article  PubMed  CAS  Google Scholar 

  127. Dai MS, Shi D, Jin Y, Sun XX, Zhang Y, Grossman SR et al (2006) Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism. J Biol Chem 281(34):24304–24313

    Article  PubMed  CAS  Google Scholar 

  128. Macias E, Jin A, Deisenroth C, Bhat K, Mao H, Lindstrom MS et al (2010) An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 interaction. Cancer Cell 18(3):231–243

    Article  PubMed  CAS  Google Scholar 

  129. Bhat KP, Itahana K, Jin A, Zhang Y (2004) Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO J 23(12):2402–2412

    Article  PubMed  CAS  Google Scholar 

  130. Longley DB, Harkin DP, Johnston PG (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3(5):330–338

    Article  PubMed  CAS  Google Scholar 

  131. Huang M, Ji Y, Itahana K, Zhang Y, Mitchell B (2008) Guanine nucleotide depletion inhibits pre-ribosomal RNA synthesis and causes nucleolar disruption. Leuk Res 32(1):131–141

    Article  PubMed  CAS  Google Scholar 

  132. Sun XX, Dai MS, Lu H (2007) 5-Fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. J Biol Chem 282(11):8052–8059

    Article  PubMed  CAS  Google Scholar 

  133. Sun XX, Dai MS, Lu H (2008) Mycophenolic acid activation of p53 requires ribosomal proteins L5 and L11. J Biol Chem 283(18):12387–12392

    Article  PubMed  CAS  Google Scholar 

  134. Yuan X, Zhou Y, Casanova E, Chai M, Kiss E, Grone HJ et al (2005) Genetic inactivation of the transcription factor TIF-IA leads to nucleolar disruption, cell cycle arrest, and p53-mediated apoptosis. Mol Cell 19(1):77–87

    Article  PubMed  CAS  Google Scholar 

  135. Azuma M, Toyama R, Laver E, Dawid IB (2006) Perturbation of rRNA synthesis in the bap28 mutation leads to apoptosis mediated by p53 in the zebrafish central nervous system. J Biol Chem 281(19):13309–13316

    Article  PubMed  CAS  Google Scholar 

  136. Zhang C, Comai L, Johnson DL (2005) PTEN represses RNA polymerase I transcription by disrupting the SL1 complex. Mol Cell Biol 25(16):6899–6911

    Article  PubMed  CAS  Google Scholar 

  137. Pestov DG, Strezoska Z, Lau LF (2001) Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol Cell Biol 21(13):4246–4255

    Article  PubMed  CAS  Google Scholar 

  138. Chakraborty A, Uechi T, Kenmochi N (2011) Guarding the ‘translation apparatus’: defective ribosome biogenesis and the p53 signaling pathway. Wiley Interdiscip Rev RNA 2(4):507–522

    Article  PubMed  CAS  Google Scholar 

  139. Panic L, Tamarut S, Sticker-Jantscheff M, Barkic M, Solter D, Uzelac M et al (2006) Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation. Mol Cell Biol 26(23):8880–8891

    Article  PubMed  CAS  Google Scholar 

  140. Danilova N, Sakamoto KM, Lin S (2008) Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood 112(13):5228–5237

    Article  PubMed  CAS  Google Scholar 

  141. Chakraborty A, Uechi T, Higa S, Torihara H, Kenmochi N (2009) Loss of ribosomal protein L11 affects zebrafish embryonic development through a p53-dependent apoptotic response. PLoS One 4(1):e4152

    Article  PubMed  CAS  Google Scholar 

  142. Barkic M, Crnomarkovic S, Grabusic K, Bogetic I, Panic L, Tamarut S et al (2009) The p53 tumor suppressor causes congenital malformations in Rpl24-deficient mice and promotes their survival. Mol Cell Biol 29(10):2489–2504

    Article  PubMed  CAS  Google Scholar 

  143. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O et al (2006) p53 Regulates mitochondrial respiration. Science 312(5780):1650–1653

    Article  PubMed  CAS  Google Scholar 

  144. Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G et al (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65(1):177–185

    PubMed  CAS  Google Scholar 

  145. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120

    Article  PubMed  CAS  Google Scholar 

  146. Yahagi N, Shimano H, Matsuzaka T, Najima Y, Sekiya M, Nakagawa Y et al (2003) p53 Activation in adipocytes of obese mice. J Biol Chem 278(28):25395–25400

    Article  PubMed  CAS  Google Scholar 

  147. Yahagi N, Shimano H, Matsuzaka T, Sekiya M, Najima Y, Okazaki S et al (2004) p53 Involvement in the pathogenesis of fatty liver disease. J Biol Chem 279(20):20571–20575

    Article  PubMed  CAS  Google Scholar 

  148. Assaily W, Rubinger DA, Wheaton K, Lin Y, Ma W, Xuan W et al (2011) ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol Cell 44(3):491–501

    Article  PubMed  CAS  Google Scholar 

  149. Ide T, Brown-Endres L, Chu K, Ongusaha PP, Ohtsuka T, El-Deiry WS et al (2009) GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress. Mol Cell 36(3):379–392

    Article  PubMed  CAS  Google Scholar 

  150. Goldstein I, Ezra O, Rivlin N, Molchadsky A, Madar S, Goldfinger N et al (2012) p53, a novel regulator of lipid metabolism pathways. J Hepatol 56(3):656–662

    Article  PubMed  CAS  Google Scholar 

  151. Goldstein I, Rotter V (2012) Regulation of lipid metabolism by p53 – fighting two villains with one sword. Trends Endocrinol Metab 23(11):567–575

    Article  PubMed  CAS  Google Scholar 

  152. Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134(3):451–460

    Article  PubMed  CAS  Google Scholar 

  153. Feng Z, Zhang H, Levine AJ, Jin S (2005) The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA 102(23):8204–8209

    Article  PubMed  CAS  Google Scholar 

  154. Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR et al (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126(1):121–134

    Article  PubMed  CAS  Google Scholar 

  155. Abida WM, Gu W (2008) p53-dependent and p53-independent activation of autophagy by ARF. Cancer Res 68(2):352–357

    Article  PubMed  CAS  Google Scholar 

  156. Morselli E, Tasdemir E, Maiuri MC, Galluzzi L, Kepp O, Criollo A et al (2008) Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle 7(19):3056–3061

    Article  PubMed  CAS  Google Scholar 

  157. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11(12):1306–1313

    Article  PubMed  CAS  Google Scholar 

  158. Tolstonog GV, Deppert W (2010) Metabolic sensing by p53: keeping the balance between life and death. Proc Natl Acad Sci USA 107(30):13193–13194

    Article  PubMed  CAS  Google Scholar 

  159. Deisenroth C, Zhang Y (2011) The ribosomal protein-Mdm2-p53 pathway and energy metabolism: bridging the Gap between feast and famine. Genes & Cancer 2(4):392–403

    Article  CAS  Google Scholar 

  160. Espinosa JM, Verdun RE, Emerson BM (2003) p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol Cell 12(4):1015–1027

    Article  PubMed  CAS  Google Scholar 

  161. Liu Y, Lagowski JP, Vanderbeek GE, Kulesz-Martin MF (2004) Facilitated search for specific genomic targets by p53 C-terminal basic DNA binding domain. Cancer Biol Ther 3(11):1102–1108

    Article  PubMed  CAS  Google Scholar 

  162. Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI (2006) The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443(7108):214–217

    Article  PubMed  CAS  Google Scholar 

  163. Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y et al (2012) Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149(6): 1269–1283

    Article  PubMed  CAS  Google Scholar 

  164. Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C et al (2012) Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell 22(1):51–65

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Zhang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, Y., Zhang, Y. (2014). Nucleolar Signaling Determines Cell Fate: The RP-Mdm2-p53 Axis Fine-Tunes Cellular Homeostasis. In: Kumar, R. (eds) Nuclear Signaling Pathways and Targeting Transcription in Cancer. Cancer Drug Discovery and Development. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8039-6_9

Download citation

Publish with us

Policies and ethics