Skip to main content

Animal Models to Study the Interplay Between Cancer and Obesity

  • Chapter
  • First Online:
Adipose Tissue and Cancer

Abstract

Overweight and/or obesity are known risk factors for many cancers and are associated with poor prognosis. Evidence for this relationship has primarily been obtained from epidemiological studies with in vitro studies characterizing potential pathways that help explain the pathological role of obesity in malignancies. Animal models provide the opportunity to more completely understand disease mechanisms and intervention strategies associated with obesity and tumorigenesis. The most widely used obese animal models result from either genetic defects or consumption of high-fat diets. Genetically obese animals used in cancer research include yellow obese mice, leptin and leptin receptor-deficient mice, and the Zucker rat. Goldthioglucose-induced obesity has occasionally been used as has been ovariectomized animals. A number of studies using rodents have explored the relationship and mechanisms of obesity and the development of mammary tumors. Additional studies have evaluated the effect of obesity in colon, skin, and prostate cancer models. These studies have provided insights into the role of body weight and tumorigenesis. However, more appropriate obesity models will be important in continuing to understand the factors associated with body weight’s impact on the development of cancer and to assist in providing pharmaceutical and nutritional interventions for cancer prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basen-Engquist K, Chang M. Obesity and cancer risk: recent review and evidence. Curr Oncol Rep. 2011;13:71–6.

    Article  PubMed  Google Scholar 

  2. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4:579–91.

    Article  PubMed  CAS  Google Scholar 

  3. Pischon T, Nöthlilngs U, Boeing H. Obesity and cancer. Proc Nutr Soc. 2008;67:128–45.

    Article  PubMed  Google Scholar 

  4. Harvey AE, Lashinger LM, Hursting SD. The growing challenge of obesity and cancer: an inflammatory issue. Ann N Y Acad Sci. 2011;1229:45–52.

    Article  PubMed  CAS  Google Scholar 

  5. Lysaght J, van der Stok EP, Allott EH, et al. Pro-inflammatory and tumour proliferative properties of excess visceral adipose tissue. Cancer Lett. 2011;312:62–72.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.

    Article  PubMed  CAS  Google Scholar 

  7. Frederich RC, Hamann A, Anderson S, et al. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med. 1995;1:1311–4.

    Article  PubMed  CAS  Google Scholar 

  8. Wolff GL, Roberts DW, Mountjoy KG. Physiological consequences of ectopic agouti gene expression: the yellow obese mouse syndrome. Physiol Genomics. 1999;1:151–63.

    PubMed  CAS  Google Scholar 

  9. Cleary MP, Maihle NJ. The role of body mass index in the relative risk of developing premenopausal versus postmenopausal breast cancer. Proc Soc Exp Biol Med. 1997;216:28–43.

    Article  PubMed  CAS  Google Scholar 

  10. Grossmann ME, Ray A, Nkhata KJ, et al. Obesity and breast cancer: status of leptin and adiponectin in pathological processes. Cancer Metastasis Rev. 2010;29:641–53.

    Article  PubMed  CAS  Google Scholar 

  11. Rose DP, Vona-Davis L. Interaction between menopausal status and obesity in affecting breast cancer risk. Maturitas. 2010;66:33–8.

    Article  PubMed  Google Scholar 

  12. Heston WE, Vlahakis G. Influence of the Ay gene on mammary-gland tumors, hepatomas, and normal growth in mice. J Natl Cancer Inst. 1961;26:969–83.

    PubMed  CAS  Google Scholar 

  13. Heston WE, Vlahakis G. C3H-Avy- a high hepatoma and mammary tumor strain of mice. J Natl Cancer Inst. 1968;40:1161–6.

    PubMed  CAS  Google Scholar 

  14. Wolff GL, Medina D, Umholtz RL. Manifestation of hyperplastic alveolar modules and mammary tumors in “viable yellow” and non-yellow mice. J Natl Cancer Inst. 1979;63:781–5.

    PubMed  CAS  Google Scholar 

  15. Wolff GL, Kodell RL, Cameron AM, et al. Accelerated appearance of chemically induced mammary carcinomas in obese yellow (Avy/A) (BALB/c Xvy) F1 hybrid mice. J Toxicol Environ Health. 1982;10:131–42.

    Article  PubMed  CAS  Google Scholar 

  16. Heston WE, Vlahakis G. Genetic obesity and neoplasia. J Natl Cancer Inst. 1962;29:197–209.

    PubMed  CAS  Google Scholar 

  17. Cleary MP, Phillips FC, Getzin SC, et al. Genetically obese MMTV-TGF-α/Lep ob Lep ob mice do not develop of mammary tumors. Breast Cancer Res Treat. 2003;77:205–15.

    Article  PubMed  CAS  Google Scholar 

  18. Cleary MP, Juneja SC, Phillips FC, et al. Leptin receptor deficient MMTV-TGF-α/Lepr db Lepr db female mice do not develop oncogene-induced mammary tumors. Exp Biol Med. 2004;229:182–93.

    CAS  Google Scholar 

  19. Lee WM, Lu S, Medline A, et al. Susceptibility of lean and obese Zucker rats to tumorigenesis induced by N-methyl-N-nitrosurea. Cancer Lett. 2001;162:155–60.

    Article  PubMed  CAS  Google Scholar 

  20. Hakkak R, Holley AW, MacLeod SL, et al. Obesity promotes 7,12-dimethylbenz(a)anthracene-induced mammary tumor development in female Zucker rats. Breast Cancer Res. 2005;7:R627–33.

    Article  PubMed  CAS  Google Scholar 

  21. Klurfeld DM, Lloyd LM, Welch CB, et al. Reduction of enhanced mammary carcinogenesis in LA/N-cp (corpulent) rats by energy restriction. Proc Soc Exp Biol Med. 1991;196:381–4.

    Article  PubMed  CAS  Google Scholar 

  22. Waxler SH, Tabar P, Melcher LP. Obesity and the time of appearance of spontaneous mammary carcinoma in C3H mice. Cancer Res. 1953;13:276–8.

    PubMed  CAS  Google Scholar 

  23. Nkhata KJ, Ray A, Dogan S, et al. Mammary tumor development from T47-D human breast cancer cells in obese ovariectomized mice with and without estradiol supplements. Breast Cancer Res Treat. 2009;114:71–83.

    Article  PubMed  CAS  Google Scholar 

  24. Hu X, Juneja SC, Maihle NJ, et al. Leptin- a growth factor for normal and malignant breast cells and normal mammary gland development. J Natl Cancer Inst. 2002;94:1704–11.

    Article  PubMed  CAS  Google Scholar 

  25. Laud K, Gourdou I, Pessemesse L, et al. Identification of leptin receptors in human breast cancer: functional activity in the T47-D breast cancer cell line. Mol Cell Endocrinol. 2002;188:219–26.

    Article  PubMed  CAS  Google Scholar 

  26. Waxler SH, Leef MF. Augmentation of mammary tumors in castrated obese C3H mice. Cancer Res. 1966;26:860–2.

    PubMed  CAS  Google Scholar 

  27. Pariza MW. Fat, calories, and mammary carcinogenesis: net energy effects. Am J Clin Nutr. 1987;45:261–3.

    PubMed  CAS  Google Scholar 

  28. Welsch CW, House JL, Herr BL, et al. Enhancement of mammary carcinogenesis by high levels of dietary fat: a phenomenon dependent on ad libitum feeding. J Natl Cancer Inst. 1990;82:1615–20.

    Article  PubMed  CAS  Google Scholar 

  29. Cleary MP, Grande JP, Juneja SC, et al. Effect of dietary-induced obesity and mammary tumor development in MMTV-neu female mice. Nutr Cancer. 2004;50:174–80.

    Article  PubMed  Google Scholar 

  30. Cleary MP, Grande JP, Maihle NJ. Effect of a high fat diet on body weight and mammary tumor latency in MMTV-TGF-α mice. Int J Obes Relat Metab Disord. 2004;28:956–62.

    Article  PubMed  CAS  Google Scholar 

  31. Dogan S, Hu X, Zhang Y, et al. Effects of high fat diet and/or body weight on mammary tumor leptin and apoptosis signaling pathways in MMTV-TGF-α mice. Breast Cancer Res. 2007;9:R91.

    Article  PubMed  Google Scholar 

  32. Khalid S, Hwang D, Babichev Y, et al. Evidence for tumor promoting effect of high-fat diet independent of insulin resistance in HER2/Neu mammary carcinogenesis. Breast Cancer Res Treat. 2010;122:647–59.

    Article  PubMed  CAS  Google Scholar 

  33. Núnez NP, Perkins SN, Smith NCP, et al. Obesity accelerates mouse mammary tumor growth in the absence of ovarian hormones. Nutr Cancer. 2008;60:534–41.

    Article  PubMed  Google Scholar 

  34. Brodie A, Lu Q, Nakamura J. Aromatase in the normal breast and breast cancer. J Steroid Biochem Mol Biol. 1997;61:281–6.

    Article  PubMed  CAS  Google Scholar 

  35. Siiteri PK. Adipose tissue as a source of hormones. Am J Clin Nutr. 1987;45:277–82.

    PubMed  CAS  Google Scholar 

  36. Subbaramaiah K, Howe LR, Bhardwaj P, et al. Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res (Phila). 2011;4:329–46.

    Article  CAS  Google Scholar 

  37. Sonnenschein EG, Glickman LT, Goldschmidt LT, et al. Body conformation, diet, and risk of breast cancer in pet dogs: a case-control study. Am J Epidemiol. 1991;133:694–703.

    PubMed  CAS  Google Scholar 

  38. Alenza DP, Rutterman GR, Peña L, et al. Relation between habitual diet and canine mammary tumors in a case-control study. J Vet Intern Med. 1998;12:132–9.

    Article  Google Scholar 

  39. Calle EE, Thun MJ. Obesity and cancer. Oncogene. 2004;23:6365–78.

    Article  PubMed  CAS  Google Scholar 

  40. Donohoe CL, Pidgeon GP, Lysaght J, et al. Obesity and gastrointestinal cancer. Br J Surg. 2010;97:628–42.

    Article  PubMed  CAS  Google Scholar 

  41. Freeman HJ. Risk of gastrointestinal malignancies and mechanisms of cancer development with obesity and its treatment. Best Pract Res Clin Gastroenterol. 2004;18:1167–75.

    PubMed  Google Scholar 

  42. Hirose Y, Hata K, Kuno T, et al. Enhancement of development of azoxymethane-induced colonic premalignant lesions in C57BL/KsJ-/db/db mice. Carcinogenesis. 2004;25:821–5.

    Article  PubMed  CAS  Google Scholar 

  43. Ealey KN, Lu S, Archer MC. Development of aberrant crypt foci in the colons of ob/ob and db/db mice: evidence that leptin is not a promoter. Mol Carcinog. 2008;47:667–77.

    Article  PubMed  CAS  Google Scholar 

  44. Bobe G, Barrett KG, Mentor-Marcel RA, et al. Dietary cooked navy beans and their fractions attenuate colon carcinogenesis in azoxymethane-induced ob/ob mice. Nutr Cancer. 2008;60:373–80.

    Article  PubMed  CAS  Google Scholar 

  45. Hayashi K, Suzuki R, Miyamoto S, et al. Citrus auraptene suppresses azoxymethane-induced colonic preneoplastic lesions in C57BL/KsJ/db/db mice. Nutr Cancer. 2007;58:75–84.

    Article  PubMed  CAS  Google Scholar 

  46. Miyamoto S, Yasui Y, Ohigashi H, et al. Dietary flavonoids suppress azoxymethane-induced colonic preneoplastic lesions in male C57BL/KsJ-db/db mice. Chem Biol Interact. 2010;183:276–83.

    Article  PubMed  CAS  Google Scholar 

  47. Yasuda Y, Shimizu M, Shirakami Y, et al. Pitavastatin inhibits azoxymethane-induced colonic preneoplastic lesions in C57BL/KsJ-db/db obese mice. Cancer Sci. 2010;101:1701–7.

    Article  PubMed  CAS  Google Scholar 

  48. Raju J, Bird RP. Energy restriction reduces the number of advanced aberrant crypt foci and attenuates the expression of colonic transforming growth factor β and cyclooxygenase isoforms in Zucker obese (fa/fa) rats. Cancer Res. 2003;63:6595–601.

    PubMed  CAS  Google Scholar 

  49. Weber RV, Stein DE, Kim J, et al. Obesity potentiates experimental colon cancer. Int J Obes. 1997;20:S85.

    Google Scholar 

  50. Cowey SL, Quast M, Belalcazar LM, et al. Abdominal obesity, insulin resistance, and colon carcinogenesis are increased in mutant mice lacking gastrin gene expression. Cancer. 2005;103:2643–53.

    Article  PubMed  CAS  Google Scholar 

  51. Teraoka N, Mutoh M, Takasu S, et al. High susceptibility to azoxymethane-induced colorectal carcinogenesis in obese KK-Ay mice. Int J Cancer. 2011;129:528–35.

    Article  PubMed  CAS  Google Scholar 

  52. Fodde R, Edelmann W, Yang K, et al. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc Natl Acad Sci USA. 1994;91:8969–73.

    Article  PubMed  CAS  Google Scholar 

  53. Gravaghi C, Bo J, LaPerle KMD, et al. Obesity enhances gastrointestinal tumorigenesis in APC-mutant mice. Int J Obes. 2008;32:1716–9.

    Article  CAS  Google Scholar 

  54. Ding S, McEntee MF, Whelan J, et al. Adiposity-related protection of intestinal tumorigenesis: interaction with dietary calcium. Nutr Cancer. 2007;58:153–61.

    Article  PubMed  CAS  Google Scholar 

  55. Algire C, Amrein L, Zakikhani M, et al. Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocr Relat Cancer. 2010;17:351–60.

    Article  PubMed  CAS  Google Scholar 

  56. Yakar S, Nunez NP, Pennisi P, et al. Increased tumor growth in mice with diet-induced obesity: impact of ovarian hormones. Endocrinology. 2006;147:5826–34.

    Article  PubMed  CAS  Google Scholar 

  57. Wu Y, Brodt P, Sun H, et al. Insulin-like growth factor-I regulates the liver microenvironment in obese mice and promotes liver metastasis. Cancer Res. 2010;70:57–67.

    Article  PubMed  CAS  Google Scholar 

  58. Drew JE, Farquharson AJ, Padidar S, et al. Insulin, leptin, and adiponectin receptors in colon: regulation relative to differing body adiposity independent of diet and in response to dimethylhydrazine. Am J Physiol. 2007;293:G682–91.

    Article  CAS  Google Scholar 

  59. Calle EE, Rodriguez C, Walker-Thurmond K, et al. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348:1625–38.

    Article  PubMed  Google Scholar 

  60. Qian Y, Fan J-G. Obesity, fatty liver and liver cancer. Hepatobiliary Pancreat Dis Int. 2005;4:173–7.

    PubMed  Google Scholar 

  61. Waxler SH. Obesity and cancer susceptibility in mice. Am J Clin Nutr. 1960;8:760–6.

    CAS  Google Scholar 

  62. Yang S, Lin HZ, Hwang J, et al. Hepatic hyperplasia in noncirrhotic fatty livers: is obesity-related hepatic steatosis a premalignant condition? Cancer Res. 2001;61:5016–23.

    PubMed  CAS  Google Scholar 

  63. Soga M, Hashimoto M, Kishimoto Y, et al. Insulin resistance, steatohepatitis, and hepatocellular carcinoma in a new congeneic strain of fatty liver Shionogi (FLS) mice with the Lep ob gene. Exp Anim. 2010;59:407–19.

    Article  PubMed  CAS  Google Scholar 

  64. Hill-Baskin AE, Markiewski MM, Buchner DA, et al. Diet-induced hepatocellular carcinoma in genetically predisposed mice. Hum Mol Genet. 2009;18:2975–88.

    Article  PubMed  CAS  Google Scholar 

  65. Wunderlich FT, Luedde T, Stinger S, et al. Hepatic NF-κB essential modulator deficiency prevents obesity-induced insulin resistance but synergizes with high-fat feeding in tumorigenesis. Proc Natl Acad Sci USA. 2008;105:1297–302.

    Article  PubMed  CAS  Google Scholar 

  66. Park EJ, Lee JH, Yu G-Y, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140:197–208.

    Article  PubMed  CAS  Google Scholar 

  67. Lemke LB, Rogers AB, Nambiar PR, et al. Obesity and non-insulin-dependent diabetes mellitus in Swiss-Webster mice associated with late-onset hepatocellular carcinoma. J Endocrinol. 2008;199:21–32.

    Article  PubMed  CAS  Google Scholar 

  68. Stauffer JK, Scarzello AJ, Anderson JB, et al. Coactivation of AKT and β-catenin in mice rapidly induces formation of lipogenic liver tumors. Cancer Res. 2011;71:2718–27.

    Article  PubMed  CAS  Google Scholar 

  69. Iatropoulos MJ, Duan JD, Jeffrey AM, et al. Hepatocellular proliferation and hepatocarcinogen bioactivation in mice with diet-induced fatty liver and obesity. Exp Toxicol Pathol. 2013;65:451–6.

    Article  PubMed  CAS  Google Scholar 

  70. Shimizu M, Sakai H, Shirakami Y, et al. Preventive effects of (−)-epigallocatechin gallate on diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BL/KsJ-db/db mice. Cancer Prev Res (Phila). 2011;4:396–403.

    Article  CAS  Google Scholar 

  71. Amling CL. Relationship between obesity and prostate cancer. Curr Opin Urol. 2005;15:167–71.

    Article  PubMed  Google Scholar 

  72. Cao Y, Ma J. Body mass index, prostate cancer-specific mortality, and biochemical recurrence: a systematic review and meta-analysis. Cancer Prev Res (Phila). 2011;4:486–501.

    Article  CAS  Google Scholar 

  73. De Nunzio C, Freedland SJ, Miano L, et al. The uncertain relationship between obesity and prostate cancer: an Italian biopsy cohort analysis. Eur J Surg Oncol. 2011;37:1025–9.

    Article  PubMed  Google Scholar 

  74. Fowke JH, Motley SS, Concepcion RS, et al. Obesity, body composition, and prostate cancer. BMC Cancer. 2012;12:23.

    Article  PubMed  Google Scholar 

  75. Llaverias G, Danillo C, Wang Y, et al. A Western-type diet accelerates tumor progression in an autochtonous mouse model of prostate cancer. Am J Pathol. 2010;177:3180–91.

    Article  Google Scholar 

  76. Bonorden MJL, Grossmann ME, Ewing SA, et al. Growth and progression of TRAMP prostate tumors in relation to diet and obesity. Prostate Cancer. 2012;2012:543970.

    Article  PubMed  Google Scholar 

  77. Blando J, Moore T, Hursting S, et al. Dietary energy balance modulates prostate cancer progression in Hi-Myc mice. Cancer Prev Res (Phila). 2011;4:2002–14.

    Article  Google Scholar 

  78. Ribeiro AM, Andrade S, Pihno F, et al. Prostate cancer cell proliferation and angiogenesis in different obese mice models. Int J Exp Pathol. 2010;91:374–86.

    Article  PubMed  CAS  Google Scholar 

  79. Lamarre NS, Ruggieri MR, Braverman AS, et al. Effect of obese and lean Zucker rat sera on human and rat prostate cancer cells: implications in obesity-related prostate tumor biology. Urology. 2007;69:191–5.

    Article  PubMed  Google Scholar 

  80. Dinkova-Kostova AT, Fahey JW, Jenkins SN, et al. Rapid body weight gain incrases the risk of UV radiation-induced skin carcinogenesis in SKH-1 hairless mice. Nutr Res. 2008;28:539–43.

    Article  PubMed  CAS  Google Scholar 

  81. Sharma SD, Katiyar SK. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin. Toxicol Appl Pharmacol. 2010;244:328–35.

    Article  PubMed  CAS  Google Scholar 

  82. Yun JP, Behan JW, Heisterkamp N, et al. Diet-induced obesity accelerates acute lymphoblastic leukemia progression in two murine models. Cancer Prev Res (Phila). 2010;3:1259–64.

    Article  CAS  Google Scholar 

  83. Yu W, Cline M, Maxwell LG, et al. Dietary vitamin D exposure prevents obesity-induced increase in endometrial cancer in Pten +/− mice. Cancer Prev Res (Phila). 2010;3:1246–58.

    Article  CAS  Google Scholar 

  84. Shors AR, Solomon C, McTiernan A, et al. Melanoma risk in relation to height, weight, and exercise (United States). Cancer Causes Control. 2001;12:599–606.

    Article  PubMed  CAS  Google Scholar 

  85. Gallus S, Naldi L, Martin L, et al. Anthropometric measures and risk of cutaneous malignant melanoma: a case-control study from Italy. Melanoma Res. 2006;16:83–7.

    Article  PubMed  Google Scholar 

  86. Naldi L, Altieri A, Imberti G, et al. Cutaneous malignant melanoma in women. Phenotypic characteristics, sun exposure, and hormonal factors: a case-control study from Italy. Ann Epidemiol. 2005;15:545–50.

    Article  PubMed  Google Scholar 

  87. Dennis LK, Lowe JB, Lynch CF, et al. Cutaneous melanoma and obesity in the agricultural health study. Ann Epidemiol. 2008;18:214–21.

    Article  PubMed  Google Scholar 

  88. Pandley V, Vijaykumar MV, Ajay AK, et al. Diet-induced obesity increases melanoma progression: involvement of Cav-1 and FASN. Int J Cancer. 2012;130:497–508.

    Article  Google Scholar 

  89. Brandon EL, Gu J-W, Cantwell L, et al. Obesity promotes melanoma tumor growth: role of leptin. Cancer Biol Ther. 2009;8:1871–9.

    Article  PubMed  CAS  Google Scholar 

  90. Kushiro K, Núnez NP. Ob/ob serum promotes mesenchymal cell phenotype in B16BL6 melanoma cells. Clin Exp Metastasis. 2011;28:877–86.

    Article  PubMed  CAS  Google Scholar 

  91. Mori A, Sakurai H, Choo M-K, et al. Severe pulmonary metastasis in obese and diabetic mice. Int J Cancer. 2006;119:2760–7.

    Article  PubMed  CAS  Google Scholar 

  92. Zyromski NJ, Mathur A, Pitt HA, et al. Obesity potentiates the growth and dissemination of pancreatic cancer. Surgery. 2009;146:258–63.

    Article  PubMed  Google Scholar 

  93. White PB, True EM, Ziegler KM, et al. Insulin, leptin, and tumoral adipocytes promote murine pancreatic cancer growth. J Gastrointest Surg. 2010;14:1888–94.

    Article  PubMed  Google Scholar 

  94. Zhang Q, Shen Q, Celestino J, et al. Enhanced estrogen-induced proliferation in obese rat endometrium. Am J Obstet Gynecol. 2009;200:186.e1–8.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH-NCI grant CA157012 and the Hormel Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margot P. Cleary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ray, A., Cleary, M.P. (2013). Animal Models to Study the Interplay Between Cancer and Obesity. In: Kolonin, M. (eds) Adipose Tissue and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7660-3_6

Download citation

Publish with us

Policies and ethics