Skip to main content

Tumor Resistance to Antibody-Mediated Immunotherapy and Reversal of Resistance: Rituximab as Prototype

  • Chapter
  • First Online:
Resistance to Immunotherapeutic Antibodies in Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 2))

  • 1012 Accesses

Abstract

It took over a century to validate what Behring [153] and Ehrlich [154] have reasoned and predicted of the potential clinical use of antibody-mediated therapies against infectious diseases and cancer. However, the practical application of antibody-mediated therapies was only possible several decades later. Porter [155] and Edelman et al. [156] published the molecular structure of the immunoglobulin molecule and through the ingenuity of Kohler and Milstein they engineered the production of hybridoma cell lines capable of producing monoclonal antibodies (mAbs). Such mAbs are one of the most important and fastest growing classes of therapeutic drugs in the treatment of non-malignant and malignant diseases. The first FDA approved cancer therapeutic antibody was in 1997 for the treatment of B-Non-Hodgkin Lymphoma (B-NHL). The mAb is a chimeric anti-CD20 mAb, rituximab, which targets both non-malignant and malignant B cells. Rituximab is currently the standard therapy when used in combination with chemotherapy (CHOP). However, like other therapeutics, a subset of patients initially does not respond and a subset responding patients develops resistance to further treatments. Such patients are in an urgent need of novel therapies to reverse resistance. This review will cover rituximab as a therapeutic prototype mAb for analyses of its several modes of action on sensitive and resistant B-NHL tumor cells, its chemo-immuno-sensitizing effects and applications of various means to reverse resistance through the use of small molecule inhibitors targeting members of the constitutively overactivated survival/antiapoptotic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADCC:

Antibody-dependent cell cytotoxicity

ARL:

AIDS-related lymphoma

CDC:

Complement-dependent cytotoxicity

CLL:

Chronic lymphositic leukemia

CTL:

Cytotoxic T lymphocyte

DLBCL:

Diffused large B cell lymphoma

Fl:

Follicular lymphoma

ITAM:

Immunotyrosine activating motif

ITIM:

Immunotyrosine inhibitory motif

NHL:

Non-Hodgkin lymphoma

NK:

Natural killer

TRAIL:

Tumor necrosis-related apoptotic-inducing ligand

YY1:

Yin Yang 1

References

  1. Lippert TH, Ruoff HJ, Volm M. Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittelforschung. 2008;58:261–4.

    PubMed  CAS  Google Scholar 

  2. Inoue J, Gohda J, Akiyama T, Semba K. NF-kappaB activation in development and progression of cancer. Cancer Sci. 2007;98:268–74.

    Article  PubMed  CAS  Google Scholar 

  3. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773:1263–84.

    Article  PubMed  CAS  Google Scholar 

  4. MacKenzie SH, Clark AC. Targeting cell death in tumors by activating caspases. Curr Cancer Drug Targets. 2008;8:98–109.

    Article  PubMed  CAS  Google Scholar 

  5. Wu AA, Niparko KJ, Pai SI. Immunotherapy for head and neck cancer. J Biomed Sci. 2008;15:275–89.

    Article  PubMed  CAS  Google Scholar 

  6. Katsman A, Umezawa K, Bonavida B. Chemosensitization and immunosensitization of resistant cancer cells to apoptosis and inhibition of metastasis by the specific NF-κB inhibitor DHMEQ. Curr Pharm Des. 2009;15:792–808.

    Article  PubMed  CAS  Google Scholar 

  7. Ng CP, Bonavida B. A new challenge for successful immunotherapy by tumors that are resistant to apoptosis: two complementary signals to overcome cross-resistance. Adv Cancer Res. 2002;85:145–74.

    Article  PubMed  CAS  Google Scholar 

  8. Kipp RT, McNeel DG. Immunotherapy for prostate cancer—recent progress in clinical trials. Clin Adv Hematol Oncol. 2007;5:465–474, 477–479.

    Google Scholar 

  9. Strome SE, Sausville EA, Mann D. A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects. Oncologist. 2007;12:1084–95.

    Article  PubMed  CAS  Google Scholar 

  10. Dalle S, Thieblemont C, Thomas L, Dumontet C. Monoclonal antibodies in clinical oncology. Anticancer Agents Med Chem. 2008;8:523–32.

    Article  PubMed  CAS  Google Scholar 

  11. Bonavida B. Rituximab-induced inhibition of antiapoptotic cell survival pathways: implications in chemo/immunoresistance, rituximab unresponsiveness, prognostic and novel therapeutic interventions. Oncogene. 2007;26:3629–36.

    Article  PubMed  CAS  Google Scholar 

  12. Firer MA, Gellerman G. Targeted drug delivery for cancer therapy: the other side of antibodies. J Hematol Oncol. 2012;5:70.

    Article  PubMed  CAS  Google Scholar 

  13. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256:495–7.

    Article  PubMed  CAS  Google Scholar 

  14. White DM, Jensen MA, Shi X, Qu Z, Arnason BG. Design and expression of polymeric immunoglobulin fusion proteins: a strategy for targeting low-affinity Fcgamma receptors. Protein Expr Purif. 2001;21:446–55.

    Article  PubMed  CAS  Google Scholar 

  15. Zelentez A. Presented at the international conference on malignant lymphoma. Switzerland: Lugano; 1999.

    Google Scholar 

  16. Reff ME, Carner K, Chambers KS, Chinn PC, Leonar JE, Raab R, Newman RA, Hanna N, Anderson DR. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 1994;83:435–45.

    PubMed  CAS  Google Scholar 

  17. Newman R, Alberts J, Anderson D, Carner K, Heard C, Norton F, Raab R, Reff M, Shuey S, Hanna N. “Primatization” of recombinant antibodies for immunotherapy of human diseases: a macaque/human chimeric antibody against human CD4. Biotechnology. 1992;10:1455–60.

    Article  PubMed  CAS  Google Scholar 

  18. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, Jain V, Ho AD, Lister J, Wey K, Shen D, Dallaire BK. J Clin Oncol. 1998;16:2825–33.

    PubMed  CAS  Google Scholar 

  19. Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3:391–400.

    Article  PubMed  CAS  Google Scholar 

  20. Witzig TE, White CA, Wiseman GA, Gordon LI, Emmanouilides C, Raubitschek A, Janakiraman N, Gutheil J, Schilder RJ, Spies S, Silverman DH, Parker E, Grillo-Lopez AJ. J Clin Oncol. 1999;17:3793–803.

    PubMed  CAS  Google Scholar 

  21. Cragg MS, Walshe CA, Ivanov AO, Glennie MJ. The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun. 2005;8:140–74.

    Article  PubMed  CAS  Google Scholar 

  22. Coffey J, Hodgson DC, Gospodarowicz MK. Eur J Nucl Med Mol Imaging. 2003;30:S28–36.

    Article  PubMed  CAS  Google Scholar 

  23. Swerdlow AJ. Epidemiology of Hodgkin’s disease and non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging. 2003;30:S3–12.

    Article  PubMed  Google Scholar 

  24. Theodossiou C, Schwarzenberger P. Non-Hodgkin’s lymphomas. Clin Obstet Gynecol. 2002;45:820–9.

    Article  PubMed  Google Scholar 

  25. Smith MR. Non-Hodgkin’s lymphoma. Curr Probl Cancer. 1996;20:6–77.

    Article  PubMed  CAS  Google Scholar 

  26. Hiddemann W. Non-Hodgkin’s lymphomas—current status of therapy and future perspectives. Eur J Cancer. 1995;31A:2141–5.

    Article  PubMed  CAS  Google Scholar 

  27. Tan BR, Bartlett NL. Treatment advances in non-Hodgkin’s lymphoma. Expert Opin Pharmacother. 2000;1:451–66.

    Article  PubMed  CAS  Google Scholar 

  28. Fisher RI. Overview of non-Hodgkin’s lymphoma: biology, staging, and treatment. Semin Oncol. 2003;30:3–9.

    PubMed  Google Scholar 

  29. Acker B, Hoppe RT, Colby TV, Cox RS, Kaplan HS, Rosenberg SA. Histologic conversion in the non-Hodgkin’s lymphomas. J Clin Oncol. 1983;1:11–6.

    PubMed  CAS  Google Scholar 

  30. Horning SJ, Rosenberg SA. The natural history of initially untreated low-grade non-Hodgkin’s lymphomas. N Engl J Med. 1984;311:1471–5.

    Article  PubMed  CAS  Google Scholar 

  31. Horning SJ, Negrin RS, Hoppe RT, Rosenberg SA, Chao NJ, Long GD, Brown BW, Blume KG. High-dose therapy and autologous bone marrow transplantation for follicular lymphoma in first complete or partial remission: results of a phase II clinical trial. Blood. 2001;97:404–9.

    Article  PubMed  CAS  Google Scholar 

  32. Hennessy BT, Hanrahan EO, Daly PA. Non-Hodgkin lymphoma: an update. Lancet Oncol. 2004;5:341–53.

    Article  PubMed  Google Scholar 

  33. Vose JM. Antibody-targeted therapy for low-grade lymphoma. Semin Hematol. 1999;36:15–20.

    PubMed  CAS  Google Scholar 

  34. van der Kolk LE, de Haas M, Grillo-López AJ, Baars JW, van Oers MH. Analysis of CD20-dependent cellular cytotoxicity by G-CSF-stimulated neutrophils. Leukemia. 2002;16:693–9.

    Article  PubMed  Google Scholar 

  35. Friedberg JW, Neuberg D, Gribben JG, Fisher DC, Canning C, Koval M, Poor CM, Green LM, Daley J, Soiffer R, Ritz J, Freedman AS. Combination immunotherapy with rituximab and interleukin 2 in patients with relapsed or refractory follicular non-Hodgkin’s lymphoma. Br J Haematol. 2002;117:828–34.

    Article  PubMed  CAS  Google Scholar 

  36. Johnson P, Glennie M. The mechanisms of action of rituximab in the elimination of tumor cells. Semin Oncol. 2003;30:3–8.

    Article  PubMed  CAS  Google Scholar 

  37. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99:754–8.

    Article  PubMed  CAS  Google Scholar 

  38. Colombat P, Watier H. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99:754–8.

    Article  PubMed  Google Scholar 

  39. Idusogie EE, Wong PY, Presta LG, Gazzano-Santoro H, Totpal K, Ultsch M, Mulkerrin MG. Engineered antibodies with increased activity to recruit complement. J Immunol. 2001;166:2571–5.

    PubMed  CAS  Google Scholar 

  40. Manches O, Lui G, Chaperot L, Gressin R, Molens JP, Jacob MC, Sotto JJ, Leroux D, Bensa JC, Plumas J. In vitro mechanisms of action of rituximab on primary non-Hodgkin lymphomas. Blood. 2003;101:949–54.

    Article  PubMed  CAS  Google Scholar 

  41. Golay J, Gramigna R, Facchinetti V, Capello D, Gaidano G, Introna M. Acquired immunodeficiency syndrome-associated lymphomas are efficiently lysed through complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity by rituximab. Br J Haematol. 2002;119:923–9.

    Article  PubMed  CAS  Google Scholar 

  42. Kennedy AD, Solga MD, Shcuman TA, Chi AW, Lindorfer MA, Sutherland WM, Foley PL, Taylor RP. An anti-C3b(i) mAb enhances complement activation, C3b(i) deposition, and killing of CD20+ cells by rituximab. Blood. 2003;101:1071–9.

    Article  PubMed  CAS  Google Scholar 

  43. Golay J, Zaffaroni L, Vaccari T, Lazzari M, Borleri GM, Bernasconi S, Tedesco F, Rambaldi A, Introna M. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood. 2000;95:3900–8.

    PubMed  CAS  Google Scholar 

  44. Harjunapaa A, Junnikkala S, Meri S. Rituximab (anti-CD20) therapy of B-cell lymphomas: direct complement killing is superior to cellular effector mechanisms. Scand J Immunol. 2000;51:634–41.

    Article  Google Scholar 

  45. Treon SP, Mitsiades C, Mitsiades N, Young G, Doss D, Schlossman R, Anderson KC. Tumor cell expression of CD59 is associated with resistance to CD20 serotherapy in patients with B-cell malignancies. J Immunother. 2001;24:263–71.

    Article  CAS  Google Scholar 

  46. Cardarelli PM, Quinn M, Buckman D, Fang Y, Colcher D, King DJ, Bebbington C, Yarranton G. Binding to CD20 by anti-B1 antibody or F(ab’)(2) is sufficient for induction of apoptosis in B-cell lines. Cancer Immuno Immunother. 2002;51:15–24.

    Article  CAS  Google Scholar 

  47. Bellosillo B, Villamor N, Lopez-Guillermo A, Marce S, Esteve J, Campo E, Colomer D, Montserrat E. Complement-mediated cell death induced by rituximab in B-cell lymphoproliferative disorders is mediated in vitro by a caspase-independent mechanism involving the generation of reactive oxygen species. Blood. 2001;98:2771–7.

    Article  PubMed  CAS  Google Scholar 

  48. Bannerji R, Kitada S, Flinn IW, Paerson M, Young D, Reed JC, Byrd JC. Apoptotic-regulatory and complement-protecting protein expression in chronic lymphocytic leukemia: relationship to in vivo rituximab resistance. J Clin Oncol. 2003;21:1466–71.

    Article  PubMed  CAS  Google Scholar 

  49. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21:3940–7.

    Article  PubMed  CAS  Google Scholar 

  50. Demidem A, Hanna N, Hariharan H, Bonavida B. Chimeric anti-CD20 (IDEC-C2B8) monoclonal antibody sensitizes a B cell lymphoma cell line to cell killing by cytotoxic drugs. FASEB J. 1995;9:A206.

    Google Scholar 

  51. Ghetie MA, Podar EM, Ilgen A, Gordon BE, Uhr JW, Vivetta ES. Homodimerization of tumor-reactive monoclonal antibodies markedly increases their ability to induce growth arrest or apoptosis of tumor cells. Proc Natl Acad Sci USA. 1997;8:7509–14.

    Article  Google Scholar 

  52. Hofmeister JK, Cooney D, Coggeshall KM. Clustered CD20 induced apoptosis: src-family kinase, the proximal regulator of tyrosine phosphorylation, calcium influx, and caspase 3-dependent apoptosis. Blood Cells Mol Dis. 2000;26:133–43.

    Article  PubMed  CAS  Google Scholar 

  53. Shan D, Ledbetter JA, Press OW. Signaling events involved in anti-CD20-induced apoptosis of malignant human B cells. Cancer Immunol Immunother. 2000;48:673–83.

    Article  PubMed  CAS  Google Scholar 

  54. Pedersen IM, Buhl AM, Klausen P, Geisler CH, Jurlander J. The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinase-dependent mechanism. Blood. 2002;99:1314–9.

    Article  PubMed  CAS  Google Scholar 

  55. Mathas S, Rickers A, Bommert K, Dorken B, Mapara MY. Anti-CD20- and B-cell receptor-mediated apoptosis: evidence for shared intracellular signaling pathways. Cancer Res. 2000;60:7170–6.

    PubMed  CAS  Google Scholar 

  56. Polyak MJ, Tailor SH, Deans JP. Identification of a cytoplasmic region of CD20 required for its redistribution to a detergent-insoluble membrane compartment. J Immunol. 1998;161:3242–8.

    PubMed  CAS  Google Scholar 

  57. Cragg MS, Morgan SM, Chan HT, Morgan BP, Filatov AV, Johnson PW, French R, Glennie MJ. Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood. 2003;101:1045–52.

    Article  PubMed  CAS  Google Scholar 

  58. Claude Chan HT, Hughes D, French RR, Tutt AL, Walshe CA, Teeling JL, Glennie MJ, Cragg MS. CD20-induced lymphoma cell death is independent of both caspases and its redistribution into triton X-100 insoluble membrane rafts. Cancer Res. 2003;63:5480–9.

    Google Scholar 

  59. Deans JP, Kalt L, Ledbetter JA, Schieven GL, Bolen JB, Johnson P. Association of 75/80-kDa phosphoproteins and the tyrosine kinases Lyn, Fyn, and Lck with the B cell molecule CD20. Evidence against involvement of the cytoplasmic regions of CD20. J Biol Chem. 1995;270:22632–8.

    Article  PubMed  CAS  Google Scholar 

  60. Deans JP, Robbins SM, Polyak MJ, Savage JA. Rapid redistribution of CD20 to a low density detergent-insoluble. J Biol Chem. 1998;273:344–8.

    Article  PubMed  CAS  Google Scholar 

  61. Semac I, Palomba C, Kulangara K, Klages N, van Echten-Deckert G, Borisch B. Anti-CD20 therapeutic antibody rituximab modifies the functional organization of rafts/microdomains of B lymphoma cells. Cancer Res. 2003;63:534–40.

    PubMed  CAS  Google Scholar 

  62. Jazirehi AR, Vega MI, Chatterjee D, Goodglick L, Bonavida B. Inhibition of the Raf-MEK1/2-ERK1/2 signaling pathway, BclxL down-regulation, and chemosensitization of non-Hodgkin’s lymphoma B cells by rituximab. Cancer Res. 2004;64:117–26.

    Article  Google Scholar 

  63. Bezombes C, Grazide S, Garret C, Fabre C, Quillet-Mary A, Muller S, Jaffrezou JP, Laurent G. Rituximab antiproliferative effect in B-lymphoma cells is associated with acid-sphingomyelinase activation in raft microdomains. Blood. 2004;104:1166–73.

    Article  PubMed  CAS  Google Scholar 

  64. Deans JP, Li H, Polyak MJ. CD20-mediated apoptosis: signalling through lipid rafts. Immunology. 2002;107:176–82.

    Article  PubMed  CAS  Google Scholar 

  65. Demiden A, Lam T, Alas S, Hariharan K, Hanna N, Bonavida B. Chimeric Anti-CD20 (IDEC-c2B8) monoclonal antibody sensitizes a B-cell lymphoma cell line to cell killing by cytotoxic drugs. Cancer Biother Radiopharm. 1997;12:177–86.

    Article  Google Scholar 

  66. Alas S, Bonavida B. Rituximab inactivates signal transducer and activation of transcription 3 (STAT3) activity in B-non-Hodgkin’s lymphoma through inhibition of the interleukin 10 autocrine/paracrine loop and results in down-regulation of Bcl-2 and sensitization to cytotoxic drugs. Cancer Res. 2001;61:5137–44.

    PubMed  CAS  Google Scholar 

  67. Alas S, Emmanouilides C, Bonavida B. Inhibition of interleukin 10 by rituximab results in down-regulation of bcl-2 and sensitization of B-cell non-Hodgkin’s lymphoma to apoptosis. Clin Cancer Res. 2001;7:709–23.

    PubMed  CAS  Google Scholar 

  68. Alas S, Bonavida B. Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin’s lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin Cancer Res. 2003;9:316–26.

    PubMed  CAS  Google Scholar 

  69. Vega MI, Huerta-Yepaz S, Garban H, Jazirehi A, Emmanouilides C, Bonavida B. Rituximab inhibits p38 MAPK activity in 2F7 B NHL and decreases IL-10 transcription: pivotal role of p38 MAPK in drug resistance. Oncogene. 2004;23:3530–40.

    Article  PubMed  CAS  Google Scholar 

  70. Jazirehi AR, Gan XH, De Vos S, Emmanouilides C, Bonavida B. Rituximab (anti-CD20) selectively modifies BclxL and apoptosis protease activating factor-1 (Apaf-1) expression and sensitizes human non-Hodgkin’s lymphoma B cell lines to paclitaxel-induced apoptosis. Mol Cancer Ther. 2003;2:1183–93.

    PubMed  CAS  Google Scholar 

  71. Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell. 2002;109:S81–96.

    Article  PubMed  CAS  Google Scholar 

  72. Dixit V, Mak TW. NF-κB signaling. Many roads lead to Madrid. Cell. 2002;111:615–9.

    Article  PubMed  CAS  Google Scholar 

  73. Jazirehi AR, Huerta-Yepez S, Cheng G, Bonavida B. Rituximab (chimeric anti-CD20 monoclonal antibody) inhibits the constitutive nuclear factor-{kappa}B signaling pathway in non-Hodgkin’s lymphoma B-cell lines: role in sensitization to chemotherapeutic drug-induced apoptosis. Cancer Res. 2005;65:264–76.

    PubMed  CAS  Google Scholar 

  74. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer [review]. Nat Rev Cancer. 2002;2:489–501.

    Article  PubMed  CAS  Google Scholar 

  75. Suzuki E, Bonavida B. Rituximab inhibits the constitutively activated PI3K-Akt pathway in B-NHL cell lines: involvement in chemosensitization to drug-induced apoptosis. Oncogene. 2007;26:6184–93.

    Article  PubMed  CAS  Google Scholar 

  76. Arancia G, Malorni W, Donelli G. Cellular mechanisms of lymphocyte-mediated lysis of tumor cells. Ann Ist Super Sanita. 1990;26:369–84.

    PubMed  CAS  Google Scholar 

  77. Goust JM. Cell-mediated immunity. Immunol Ser. 1990;50:195–215.

    PubMed  CAS  Google Scholar 

  78. Shresta S, Pham CT, Thomas DA, Graubert TA, Ley TJ. How do cytotoxic lymphocytes kill their targets? Curr Opin Immunol. 1998;10:581–7.

    Article  PubMed  CAS  Google Scholar 

  79. Wilson NS, Dixit V, Ashkenazi A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol. 2009;10:348–55.

    Article  PubMed  CAS  Google Scholar 

  80. Baritaki S, Bonavida B. Inhibition of snail-induced epithelial-mesenchymal transition and induction of the tumor metastasis suppressor gene raf-1 kinase inhibitor protein (RKIP) by DETANONOate. Forum Immunopathological Dis Ther. 2010;1:219–30.

    Article  Google Scholar 

  81. Garban HJ, Bonavida B. Nitric oxide inhibits the transcription repressor Yin-Yang 1 binding activity at the silencer region of the Fas promoter: a pivotal role for nitric oxide in the up-regulation of Fas gene expression in human tumor cells. J Immunol. 2001;167:75–81.

    PubMed  CAS  Google Scholar 

  82. Vega MI, Jazirehi AR, Huerta-Yepez S, Bonavida B. Rituximab-induced inhibition of YY1 and BclxL expression in Ramos non-Hodgkin’s lymphoma cell line via inhibition of NF-kappa B activity: role of YY1 and BclxL in Fas resistance and chemoresistance, respectively. J Immunol. 2005;175:2174–83.

    PubMed  CAS  Google Scholar 

  83. Vega MI, Baritaki S, Huerta-Yepez S, Martinez-Paniagua MA, Bonavida B. A potential mechanism of rituximab-induced inhibition of tumor growth through its sensitization to tumor necrosis factor-related apoptosis-inducing ligand-expressing host cytotoxic cells. Leuk Lymphoma. 2011;52:108–21.

    Article  PubMed  CAS  Google Scholar 

  84. MacFarlane M, Harper N, Snowden RT, et al. Mechanisms of resistance to TRAIL-induced apoptosis in primary B cell chronic lymphocytic leukaemia. Oncogene. 2002;21:6809–18.

    Article  PubMed  CAS  Google Scholar 

  85. Huerta S, Baay-Guzman G, Gonzalez-Bonilla CR, Livingston EH, Huerta-Yepez S, Bonavida B. In vitro and in vivo sensitization of SW620 metastatic colon cancer cells to CDDP-induced apoptosis by the nitric oxide donor DETANONOate: involvement of AIF. Nitric Oxide. 2009;20:182–94.

    Article  PubMed  CAS  Google Scholar 

  86. Daniel D, Yang B, Lawrence DA, Totpal K, Balter I, Lee WP, Gogineni A, Cole MJ, Yee SF, Ross S, Ashkenazi A. Cooperation of the proapoptotic receptor agonist rhApo2L/TRAIL with the CD20 antibody rituximab against non-Hodgkin lymphoma xenografts. Blood. 2007;110:4037–46.

    Article  PubMed  CAS  Google Scholar 

  87. Vega MI, Huerta-Yepez S, Martinez-Paniagua M, Martinez-Miguel B, Hernandez-Pando R, Gonzalez-Bonilla CR, Chinn P, Hanna N, Hariharan K, Jazirehi AR, Bonavida B. Rituximab-mediated cell signalling and chem./immuno-sensitization of drug-resistant B-NHL is independent of its Fc functions. Clin Cancer Res. 2009;15:6582–94.

    Article  PubMed  CAS  Google Scholar 

  88. Daëron M, Malbec O, Latour S, Espinosa E, Pina P, Fridman WH. Regulation of tyrosine-containing activation motif-dependent cell signalling by Fc gamma RII. Immunol Lett. 1995;44:119–23.

    Article  PubMed  Google Scholar 

  89. Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW. Apoptosis defects and chemo-therapy resistance: molecular interaction maps and networks. Oncogene. 2004;23:2934–49.

    Article  PubMed  CAS  Google Scholar 

  90. Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23:2838–49.

    Article  PubMed  CAS  Google Scholar 

  91. Foran JM, Norton AJ, Micallef IN, Taussig DC, Amess JA, Rohatiner AZ, Lister TA. Br J Haematol. 2001;114:881–3.

    Article  PubMed  CAS  Google Scholar 

  92. Pickartz T, Ringel F, Wedde M, Renz H, Klein A, von Neuhoff N, Dreger P, Kreuzer KA, Schmidt CA, Srock S, Schoeler D, Schriever F. Exp Hematol. 2001;29:1410–6.

    Article  PubMed  CAS  Google Scholar 

  93. Alvaro-Naranjo T, Jaen-Martinez J, Guma-Padro J, Bosch-Princep R, Salvado-Usach MT. Ann Hematol. 2003;82:585–8.

    Article  PubMed  CAS  Google Scholar 

  94. Jilani I, O’Brien S, Manshuri T, Thomas DA, Thomazy VA, Imam M, Naeem S, Verstovsek S, Kantarjian H, Giles F, Keating M, Albitar M. Blood. 2003;102:3514–20.

    Article  PubMed  CAS  Google Scholar 

  95. Kennedy GA, Tey SK, Cobcroft R, Marlton P, Cull G, Grimmett K, Thomson D, Gill D. Incidence and nature of CD20-negative relapses following rituximab therapy in aggressive B-cell non-Hodgkin’s lymphoma: a retrospective review. Br J Haematol. 2002;119:412–6.

    Article  PubMed  CAS  Google Scholar 

  96. Davis TA, Czerwinski DK, Levy R. Clin Cancer Res. 1999;5:611–5.

    PubMed  CAS  Google Scholar 

  97. Haidar JH, Shamseddine A, Salem Z, Mrad YA, Nasr MR, Zaatari G, Bazarbachi A. Loss of CD20 expression in relapsed lymphomas after rituximab therapy. Eur J Haematol. 2003;70:330–2.

    Article  PubMed  Google Scholar 

  98. Manshouri T, Do KA, Wang X, Giles FJ, O’Brien SM, Saffer H, Thomas D, Jilani I, Kantarjian HM, Keating MJ, Albitar M. Circulating CD20 is detectable in the plasma of patients with chronic lymphocytic leukemia and is of prognostic significance. Leuk Lymphoma. 2003;44:S15–27.

    Article  CAS  Google Scholar 

  99. Smith MR. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene. 2003;22:7359–68.

    Article  PubMed  CAS  Google Scholar 

  100. Rezvani AR, Maloney DG. Rituximab resistance. Best Pract Res Clin Haematol. 2011;24:203–16.

    Article  PubMed  CAS  Google Scholar 

  101. Taylor RP, Lindorfer MA. Antigenic modulation and rituximab resistance. Semin Hematol. 2010;47:124–32.

    Article  PubMed  CAS  Google Scholar 

  102. Ghesquières H, Cartron G, Seymour JF, Delfau-Larue MH, Offner F, Soubeyran P, Perrot A, Brice P, Bouabdallah R, Sonet A, Dupuis J, Casasnovas O, Catalano JV, Delmer A, Jardin F, Verney A, Dartigues P, Salles G. Clinical outcome of patients with follicular lymphoma receiving chemoimmunotherapy in the PRIMA study is not affected by FCGR3A and FCGR2A polymorphisms. Blood. 2012;120:2650–7.

    Article  PubMed  CAS  Google Scholar 

  103. Gisselbrecht C, Schmitz N, Mounier N, Singh GD, Linch DC, Trneny M, Bosly A, Milpied NJ, Radford J, Ketterer N, Shpilberg O, Dührsen U, Hagberg H, Ma DD, Viardot A, Lowenthal R, Brière J, Salles G, Moskowitz CH, Glass B. Rituximab maintenance therapy after autologous stem-cell transplantation in patients with relapsed CD20+ diffuse large B-cell lymphoma: final analysis of the collaborative trial in relapsed aggressive lymphoma. J Clin Oncol. 2012;30:4462–9.

    Article  PubMed  CAS  Google Scholar 

  104. Motta G, Cea M, Moran E, Carbone F, Augusti V, Patrone F, Nencioni A. Monoclonal antibodies for non-Hodgkin’s lymphoma: state of the art and perspectives. Clin Dev Immunol. 2010;2010:428253.

    Article  PubMed  CAS  Google Scholar 

  105. Wang SY, Racila E, Taylor RP, Weiner GJ. NK-cell activation and antibody-dependent cellular cytotoxicity induced by rituximab-coated target cells is inhibited by the C3b component of complement. Blood. 2008;111:1456–63.

    Article  PubMed  CAS  Google Scholar 

  106. Macor P, Tripodo C, Zorzet S, Piovan E, Bossi F, Marzari R, Amadori A, Tedesco F. In vivo targeting of human neutralizing antibodies against CD55 and CD59 to lymphoma cells increases the antitumor activity of rituximab. Cancer Res. 2007;67:10556–63.

    Article  PubMed  CAS  Google Scholar 

  107. Davis TA, Grillo-López AJ, White CA, McLaughlin P, Czuczman MS, Link BK, Maloney DG, Weaver RL, Rosenberg J, Levy R. Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s lymphoma: safety and efficacy of re-treatment. J Clin Oncol. 2000;18:3135–43.

    PubMed  CAS  Google Scholar 

  108. Burger JA, Gandhi V. The lymphatic tissue microenvironments in chronic lymphocytic leukemia: in vitro models and the significance of CD40-CD154 interactions. Blood. 2009;114:2560–1.

    Article  PubMed  CAS  Google Scholar 

  109. Jazirehi AR, Bonavida B. Resveratrol modifies the expression of apoptotic regulatory proteins and sensitizes non-Hodgkin’s lymphoma and multiple myeloma cell lines to paclitaxel-induced apoptosis. Mol Cancer Ther. 2004;3:71–84.

    Article  PubMed  CAS  Google Scholar 

  110. Minn AJ, Rudin CM, Boise LH, Thompson CB. Expression of bclxL can confer a multidrug resistance phenotype. Blood. 1995;86:1903–10.

    PubMed  CAS  Google Scholar 

  111. Reed JC. Bcl-2 family proteins: regulators of chemoresistance in cancer. Toxicol Lett. 1995;82:155–8.

    Article  PubMed  Google Scholar 

  112. Xerri L, Parc P, Brousset P, Schlaifer D, Hassoun J, Reed JC, Krajewski S, Birnbaum D. Predominant expression of the long isoform of Bcl-x (BclxL) in human lymphomas. Br J Haematol. 1996;92:900–6.

    Article  PubMed  CAS  Google Scholar 

  113. Amundson SA, Myers TG, Scudiero D, Kitada S, Reed JC, Fornace A Jr. An informatics approach identifying markers of chemosensitivity in human lymphomas. Cancer Res. 2000;60:6101–10.

    PubMed  CAS  Google Scholar 

  114. Tudor G, Aguilera A, Halverson DO, Laing ND, Sauville EA. Susceptibility to drug-induced apoptosis correlates with differential modulation of Bad, Bcl-2 and BclxL protein levels. Cell Death Differ. 2000;7:574–86.

    Article  PubMed  CAS  Google Scholar 

  115. Cheng J, Yang J, Xia Y, Karin M, Su B. Synergistic interaction of MEK kinase 2, c-Jun N-terminal kinase (JNK) kinase 2, and JNK1 results in efficient and specific JNK1 activation. Mol Cell Biol. 2000;20:2334–42.

    Article  PubMed  CAS  Google Scholar 

  116. Jazirehi AR, Vega MI, Bonavida B. Development of rituximab-resistant lymphoma clones with altered cell signaling and cross resistance to chemotherapy. Cancer Res. 2007;67:1270–81.

    Article  PubMed  CAS  Google Scholar 

  117. Spina M, Tirelli U. Rituximab for HIV-associated lymphoma: weighing the benefits and risks. Curr Opin Oncol. 2005;17:462–5.

    Article  PubMed  CAS  Google Scholar 

  118. Mounier N, Spina M, Gisselbrecht C. Modern management of non-Hodgkin lymphoma in HIV-infected patients. Br J Haematol. 2007;136:685–98.

    Article  PubMed  CAS  Google Scholar 

  119. de Vos S, Goy A, Dakhil SR, Saleh MN, McLaughlin P, Belt R, Flowers CR, Knapp M, Hart L, Patel-Donnelly D, Glenn M, Gregory SA, Holladay C, Zhang T, Boral AL. Multicenter randomized phase II study of weekly or twice-weekly bortezomib plus rituximab in patients with relapsed or refractory follicular or marginal-zone B-cell lymphoma. J Clin Oncol. 2009;27:5023–30.

    Article  PubMed  CAS  Google Scholar 

  120. Shimizu R, Kikuchi J, Wada T, Ozawa K, Kano Y, Furukawa Y. HDAC inhibitors augment cytotoxic activity of rituximab by upregulating CD20 expression on lymphoma cells. Leukemia. 2010;24:1760–8.

    Article  PubMed  CAS  Google Scholar 

  121. Hiraga J, Tomita A, Sugimoto T, Shimada K, Ito M, Nakamura S, Kiyoi H, Kinoshita T, Naoe T. Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemotherapies: its prevalence and clinical significance. Blood 2009; 14;113:4885–4893.

    Google Scholar 

  122. Maiso P, Carvajal-Vergara X, Ocio EM, López-Pérez R, Mateo G, Gutiérrez N, Atadja P, Pandiella A. San Miguel JF. The histone deacetylase inhibitor LBH589 is a potent antimyeloma agent that overcomes drug resistance. Cancer Res. 2006;66:5781–9.

    Article  PubMed  CAS  Google Scholar 

  123. Pro B, Leber B, Smith M, Fayad L, Romaguera J, Hagemeister F, Rodriguez A, McLaughlin P, Samaniego F, Zwiebel J, Lopez A, Kwak L, Younes A. Phase II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in combination with rituximab in patients with recurrent B-cell non-Hodgkin lymphoma. Br J Haematol. 2008;143:355–60.

    Article  PubMed  CAS  Google Scholar 

  124. Hermine O, Haioun C, Lepage E, d’Agay MF, Briere J, Lavignac C, Fillet G, Salles G, Marolleau JP, Diebold J, Reyas F, Gaulard P. Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin’s lymphoma. Groupe d’Etude des Lymphomes de l’Adulte (GELA). Blood. 1996;87:265–72.

    PubMed  CAS  Google Scholar 

  125. Gascoyne RD, Adomat SA, Krajewski S, Krajewska M, Horsman DE, Tolcher AW, O’Reilly SE, Hoskins P, Coldman AJ, Reed JC, Connors JM. Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin’s lymphoma. Blood. 1997;90:244–51.

    PubMed  CAS  Google Scholar 

  126. Waters JS, Webb A, Cunningham D, Clarke PA, Raynaud F, di Stefano F, Cotter FE. Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma. J Clin Oncol. 2000;18:1812–23.

    PubMed  CAS  Google Scholar 

  127. Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2:907–16.

    Article  PubMed  CAS  Google Scholar 

  128. Bonavida B. Novel therapeutic applications of nitric oxide in the inhibition of tumor malignancy and reversal of resistance. In: Ignarro LJ, editor. Nitric oxide: biology and pathobiology. 2nd ed. San Diego: Elsevier; 2010.

    Google Scholar 

  129. Wink DA, Ridnour LA, Hussain SP, Harris CC. The reemergence of nitric oxide and cancer. Nitric Oxide. 2008;19:65–7.

    Article  PubMed  CAS  Google Scholar 

  130. Ridnour LA, Thomas DD, Switzer C, Flores-Santana W, Isenberg JS, Ambs S, Roberts DD, Wink DA. Molecular mechanisms for discrete nitric oxide levels in cancer. Nitric Oxide. 2008;19:73–6.

    Article  PubMed  CAS  Google Scholar 

  131. Bonavida B, Baritaki S, Huerta-Yepez S, Vega MI, Chatterjee D, Yeung K. Novel therapeutic applications of nitric oxide donors in cancer: roles in chemo- and immunosensitization to apoptosis and inhibition of metastases. Nitric Oxide. 2008;19:152–7.

    Article  PubMed  CAS  Google Scholar 

  132. Blaise GA, Gauvin D, Gangal M, Authier S. Nitric oxide, cell signaling and cell death. Toxicology. 2005;208:177–92.

    Article  PubMed  CAS  Google Scholar 

  133. Tuteja N, Chandra M, Tuteja R, Misra MK. Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J Biomed Biotechnol. 2004;4:227–37.

    Article  Google Scholar 

  134. Moncada S, Erusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol. 2002;3:214–20.

    Article  PubMed  CAS  Google Scholar 

  135. Brune B. The intimate relation between nitric oxide and superoxide in apoptosis and cell survival. Antioxid Redox Signal. 2005;7:497–507.

    Article  PubMed  Google Scholar 

  136. Marshall HE, Stamler JS. Inhibition of NF-kappa B by S-nitrosylation. Biochemistry. 2001;40:1688–93.

    Article  PubMed  CAS  Google Scholar 

  137. Wink DA, Cook JA, Christodoulou D, Krishna MC, Pacelli R, Kim S, DeGraff W, Gamson J, Vodovotz Y, Russo A, Mitchell JB. Nitric oxide and some nitric oxide donor compounds enhance the cytotoxicity of cisplatin. Nitric Oxide. 1997;1:88–94.

    Article  PubMed  CAS  Google Scholar 

  138. Evig CB, Kelley EE, Weydert CJ, Chu Y, Buettner GR, Burns CP. Endogenous production and exogenous exposure to nitric oxide augment doxorubicin cytotoxicity for breast cancer cells but not cardiac myoblasts. Nitric Oxide. 2004;10:119–29.

    Article  PubMed  CAS  Google Scholar 

  139. Huerta-Yepez S, Baritaki S, Baay-Guzman G, Hernandez-Luna MA, Hernandez-Cueto A, Vega MI, Bonavida B. Contribution of either YY1 or Bcl(XL)-induced inhibition by the NO-donor DETANONOate in the reversal of drug resistance, both in vitro and in vivo. YY1 and Bcl(XL) are overexpressed in prostate cancer. Nitric Oxide. 2012;29C:17–24.

    Google Scholar 

  140. Fukuo K, Hata S, Suhara T, Nakahashi T, Shinto Y, Tsujimoto Y, Morimoto S, Ogihara T. Nitric oxide induces upregulation of Fas and apoptosis in vascular smooth muscle. Hypertension. 1996;27:823–6.

    Article  PubMed  CAS  Google Scholar 

  141. Garban HJ, Bonavida B. Nitric oxide sensitizes ovarian tumor cells to Fas-induced apoptosis. Gynecol Oncol. 1999;73:257–64.

    Article  PubMed  CAS  Google Scholar 

  142. Garban HJ, Bonavida B. Nitric oxide disrupts H2O2-dependent activation of nuclear factor kappa B. Role in sensitization of human tumor cells to tumor necrosis factor-alpha-induced cytotoxicity. J Biol Chem. 2001;276:8918–23.

    Article  PubMed  CAS  Google Scholar 

  143. Huerta-Yepez S, Vega M, Escoto-Chavez SE, Murdock B, Sakai T, Baritaki S, Bonavida B. Nitric oxide sensitizes tumor cells to TRAIL-induced apoptosis via inhibition of the DR5 transcription repressor Yin Yang 1. Nitric Oxide. 2009;20:39–52.

    Article  PubMed  CAS  Google Scholar 

  144. Worthington J, McCarthy HO, Barrett E, Adams C, Robson T, Hirst DG. Use of the radiation-inducible WAF1 promoter to drive iNOS gene therapy as a novel anti-cancer treatment. J Gene Med. 2004;6:673–80.

    Article  PubMed  CAS  Google Scholar 

  145. Jeannin JF, Leon L, Cortier M, Sassi N, Paul C, Bettaieb A. Nitric oxide-induced resistance or sensitization to death in tumor cells. Nitric Oxide. 2008;19:158–63.

    Article  PubMed  CAS  Google Scholar 

  146. Baritaki S, Suzuki E, Umezawa K, Spandidos DA, Berenson J, Daniels TR, Penichet ML, Jazirehi AR, Palladino M, Bonavida B. Inhibition of Yin Yang 1-dependent repressor activity of DR5 transcription and expression by the novel proteasome inhibitor NPI-0052 contributes to its TRAIL-enhanced apoptosis in cancer cells. J Immunol. 2008;180:6199–210.

    PubMed  CAS  Google Scholar 

  147. Stein R, Qu Z, Chen S, Rosario A, Shi V, Hayes M, Horak ID, Hansen HJ, Goldenberg DM. Characterization of a new humanized anti-CD20 monoclonal antibody, IMMU-106, and Its use in combination with the humanized anti-CD22 antibody, epratuzumab, for the therapy of non-Hodgkin’s lymphoma. Clin Cancer Res. 2004;10:2868–78.

    Article  PubMed  CAS  Google Scholar 

  148. Peaker CJ, Neuberger MS. Association of CD22 with the B cell antigen receptor. Eur J Immunol. 1993;23:1358–63.

    Article  PubMed  CAS  Google Scholar 

  149. Carnahan J, Wang P, Kendall R, Chen C, Hu S, Boone T, Juan T, Talvenheimo J, Montestruque S, Sun J, Elliott G, Thomas J, Ferbas J, Kern B, Briddell R, Leonard JP, Cesano A. Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties. Clin Cancer Res. 2003;9:3982S–90S.

    PubMed  CAS  Google Scholar 

  150. Leonard JP, Coleman M, Ketas JC, Chadburn A, Ely S, Furman RR, Wegener WA, Hansen HJ, Ziccardi H, Eschenberg M, Gayko U, Cesano A, Goldenberg DM. Phase I/II trial of epratuzumab (humanized anti-CD22 antibody) in indolent non-Hodgkin’s lymphoma. J Clin Oncol. 2003;21:3051–9.

    Article  PubMed  CAS  Google Scholar 

  151. Maddipatla S, Hernandez-Ilizaliturri FJ, Knight J, Czuczman MS. Augmented antitumor activity against B-cell lymphoma by a combination of monoclonal antibodies targeting TRAIL-R1 and CD20. Clin Cancer Res. 2007;13:4556–64.

    Article  PubMed  CAS  Google Scholar 

  152. Shen J, Vil MD, Jimenez X, Zhang H, Iacolina M, Mangalampalli V, Balderes P, Ludwig DL, Zhu Z. Single variable domain antibody as a versatile building block for the construction of IgG-like bispecific antibodies. J Immunol Methods. 2007;318:65–74.

    Article  PubMed  CAS  Google Scholar 

  153. Behring E. Uber das zustandekommen der diphterie-immunitat und der tetanus-immunitat bei theiren. Deut Med Wochenschr. 1890;14:1113–4.

    Google Scholar 

  154. Ehrlich P. On immunity with special reference to cell life. Proc Roy Soc. 1900;66:424–48.

    CAS  Google Scholar 

  155. Porter RR. The structure of antibodies. The basic pattern of the principal class of molecules that neutralize antigens (foreign substances in the body) is four cross-linked chains. This pattern is modified so that antibodies can fit different antigens. Sci Am. 1967;217:81–7.

    Article  PubMed  CAS  Google Scholar 

  156. Edelman GM, Gall WE, Waxdal MJ, Konigsberg WH. The covalent structure of a human gamma G-immunoglobulin. I. Isolation and characterization of the whole molecule, the polypeptide chains, and the tryptic fragments. Biochemistry. 1968;7:1950–8.

    Article  PubMed  CAS  Google Scholar 

  157. Marcus R. Current treatment options in aggressive lymphoma. Leuk Lymphoma. 2003;44:S15–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a gift from various donors and, in part, by the Jonsson Comprehensive Cancer Center at UCLA. The author acknowledges Drs. Ali R. Jazirehi, Mario I. Vega, and Stavroula Baritaki for their published research that forums and the basis of this review. The author also acknowledges the assistance of Daphne Liang, Melissa Cao, Kathy Nguyen, and Suzie Vardanyan for the preparation of the manuscript.

Conflicts of Interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Bonavida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bonavida, B. (2013). Tumor Resistance to Antibody-Mediated Immunotherapy and Reversal of Resistance: Rituximab as Prototype. In: Bonavida, B. (eds) Resistance to Immunotherapeutic Antibodies in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7654-2_5

Download citation

Publish with us

Policies and ethics