Skip to main content

Macrolides for the Treatment and Prevention of BOS

  • Chapter
  • First Online:
Bronchiolitis Obliterans Syndrome in Lung Transplantation

Abstract

Chronic lung allograft rejection or its clinical correlate, the bronchiolitis obliterans syndrome (BOS), characterized by a persistent decline in forced expiratory volume in 1 s (FEV1) from an established baseline, is the single most important cause of death in lung transplant recipients after the first postoperative year. BOS is thought to be the final common endpoint of various injuries to the pulmonary allograft, triggering different innate and adaptive immune responses. Most preventive and therapeutic strategies for BOS have thus far been largely unsuccessful. However, the introduction of macrolide antibiotics, such as clarithromycin or particularly azithromycin (AZI), in the field of lung transplantation (LTx) as of 2003 made it clear that some patients with established BOS might in fact benefit from such therapy due to its various anti-inflammatory and immunomodulatory properties, as summarized in this chapter. Particularly in patients with an increased bronchoalveolar lavage (BAL) neutrophilia, AZI treatment could result in an increase in FEV1 of at least 10 %. More recently, it has become clear that prophylactic therapy with AZI actually may prevent BOS and improve FEV1 after LTx. However, one should always be aware of possible adverse effects related to AZI when implementing this drug as prophylactic or long-term treatment. Even so, AZI therapy after LTx can generally be considered as safe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Estenne M, Maurer JR, Boehler A, Egan JJ, Frost A, Hertz M, et al. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J Heart Lung Transplant. 2002;21: 297–310.

    Article  PubMed  Google Scholar 

  2. Hagedorn PH, Burton CM, Carlsen J, Steinbrüchel D, Andersen CB, Sahar E, et al. Chronic rejection of a lung transplant is characterized by a profile of specific autoantibodies. Immunology. 2010;130(3):427–35.

    Article  PubMed  CAS  Google Scholar 

  3. Sharples LD, McNeil K, Stewart S, Wallwork J. Risk factors for bronchiolitis obliterans: a systematic review of recent publications. J Heart Lung Transplant. 2002;21(2):271–81.

    Article  PubMed  Google Scholar 

  4. Vos R, Vanaudenaerde BM, Geudens N, Dupont LJ, Van Raemdonck DE, Verleden GM. Pseudomonal airway colonisation: risk factor for bronchiolitis obliterans syndrome after lung transplantation? Eur Respir J. 2008;31:1037–45.

    Article  PubMed  CAS  Google Scholar 

  5. Nawrot TS, Vos R, Jacobs L, Verleden SE, Wauters S, Mertens V, et al. The impact of traffic air pollution on chronic rejection and mortality after lung transplantation. Thorax. 2011;66(9):748–54.

    Article  PubMed  Google Scholar 

  6. Blondeau K, Mertens V, Vanaudenaerde BA, Verleden GM, Van Raemdonck DE, Sifrim D, et al. Gastro-oesophageal reflux and gastric aspiration in lung transplant patients with or without chronic rejection. Eur Respir J. 2008;31(4):707–13.

    Article  PubMed  CAS  Google Scholar 

  7. Boehler A, Kesten S, Weder W, Speich R. Bronchiolitis obliterans after lung transplantation: a review. Chest. 1998;114(5):1411–26.

    Article  PubMed  CAS  Google Scholar 

  8. Borthwick LA, McIlroy E, Gorowiec MR, Brodlie M, Johnson GE, Ward C, et al. Inflammation and epithelial to mesenchymal transition in lung transplant recipients: role in dysregulated epithelial wound repair. Am J Transplant. 2010;10(3):498–509.

    Article  PubMed  CAS  Google Scholar 

  9. Vanaudenaerde BM, De Vleeschauwer SI, Vos R, Meyts I, Bullens DM, Reynders V, et al. The role of the IL23/IL17 axis in bronchiolitis obliterans syndrome after lung transplantation. Am J Transplant. 2008;8(9):1911–20.

    Article  PubMed  CAS  Google Scholar 

  10. DiGiovine B, Lynch 3rd JP, Martinez FJ, Flint A, Whyte RI, Iannettoni MD, et al. Bronchoalveolar lavage neutrophilia is associated with obliterative bronchiolitis after lung transplantation: role of IL-8. J Immunol. 1996;157(9):4194–202.

    PubMed  CAS  Google Scholar 

  11. Stewart S, Fishbein MC, Snell GI, Berry GJ, Boehler A, Burke MM, et al. Revision of the 1996 working formulation for the standardization of nomenclature in the diagnosis of lung rejection. J Heart Lung Transplant. 2007;26(12):1229–42.

    Article  PubMed  Google Scholar 

  12. Retsema J, Fu W. Macrolides: structures and microbial targets. Int J Antimicrob Agents. 2001;18(S1):S3–10.

    Article  PubMed  CAS  Google Scholar 

  13. Kobayashi H, Ohgaki N, Takeda H. Therapeutic possibilities for diffuse panbronchiolitis. Int J Antimicrob Agents. 1993;3(S1):S81–6.

    Article  PubMed  Google Scholar 

  14. Saiman L, Marshall BC, Mayer-Hamblett N, Burns JL, Quittner AL, Cibene DA, et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA. 2003;290(13):1749–56.

    Article  PubMed  CAS  Google Scholar 

  15. Anwar GA, Bourke SC, Afolabi G, Middleton P, Ward C, Rutherford RM. Effects of long-term low-dose azithromycin in patients with non-CF bronchiectasis. Respir Med. 2008;102(10):1494–6.

    Article  PubMed  CAS  Google Scholar 

  16. Vos R, Vanaudenaerde BM, Dupont LJ, Van Raemdonck DE, Verleden GM. Transient airway colonization is associated with airway inflammation after lung transplantation. Am J Transplant. 2007;7:1278–87.

    Article  PubMed  CAS  Google Scholar 

  17. Shinkai M, Henke MO, Rubin BK. Macrolide antibiotics as immunomodulatory medications: proposed mechanisms of action. Pharmacol Ther. 2008;117:393–405.

    Article  PubMed  CAS  Google Scholar 

  18. Gielen V, Johnston SL, Edwards MR. Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J. 2010;36(3):646–54.

    Article  PubMed  CAS  Google Scholar 

  19. Weinberg A, Lyu DM, Li S, Marquesen J, Zamora MR. Incidence and morbidity of human metapneumovirus and other community-acquired respiratory viruses in lung transplant recipients. Transpl Infect Dis. 2010;12(4):330–5.

    Article  PubMed  CAS  Google Scholar 

  20. Kai T, Tateda K, Kimura S, Ishii Y, Ito H, Yoshida H, et al. A low concentration of azithromycin inhibits the mRNA expression of N-acyl homoserine lactone synthesis enzymes, upstream of lasI or rhlI, in Pseudomonas aeruginosa. Pulm Pharmacol Ther. 2009;22(6):483–6.

    Article  PubMed  CAS  Google Scholar 

  21. Hoffmann N, Lee B, Hentzer M, Rasmussen TB, Song Z, Johansen HK, et al. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(−/−) mice. Antimicrob Agents Chemother. 2007;51(10):3677–87.

    Article  PubMed  CAS  Google Scholar 

  22. Sugimura M, Maseda H, Hanaki H, Nakae T. Macrolide antibiotic-mediated downregulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2008;52(11):4141–4.

    Article  PubMed  CAS  Google Scholar 

  23. Kawamura-Sato K, Iinuma Y, Hasegawa T, Horii T, Yamashino T, Ohta M. Effect of subinhibitory concentrations of macrolides on expression of flagellin in Pseudomonas aeruginosa and Proteus mirabilis. Antimicrob Agents Chemother. 2000;44(10):2869–72.

    Article  PubMed  CAS  Google Scholar 

  24. Halldorsson S, Gudjonsson T, Gottfredsson M, Singh PK, Gudmundsson GH, Baldursson O. Azithromycin maintains airway epithelial integrity during Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol. 2010;42(1):62–8.

    Article  PubMed  CAS  Google Scholar 

  25. Imamura Y, Yanagihara K, Mizuta Y, Seki M, Ohno H, Higashiyama Y, et al. Azithromycin inhibits MUC5AC production induced by the Pseudomonas aeruginosa autoinducer N-(3-Oxododecanoyl) homoserine lactone in NCI-H292 cells. Antimicrob Agents Chemother. 2004;48(9):3457–61.

    Article  PubMed  CAS  Google Scholar 

  26. Murphy DM, Forrest IA, Corris PA, Johnson GE, Small T, Jones D, et al. Azithromycin attenuates effects of lipopolysaccharide on lung allograft bronchial epithelial cells. J Heart Lung Transplant. 2008;27(11):1210–6.

    Article  PubMed  Google Scholar 

  27. Ribeiro CM, Hurd H, Wu Y, Martino ME, Jones L, Brighton B, et al. Azithromycin treatment alters gene expression in inflammatory, lipid metabolism, and cell cycle pathways in well-differentiated human airway epithelia. PLoS One. 2009;4(6):e5806.

    Article  PubMed  Google Scholar 

  28. Millrose M, Kruse M, Flick B, Stahlmann R. Effects of macrolides on proinflammatory epitopes on endothelial cells in vitro. Arch Toxicol. 2009;83(5):469–76.

    Article  PubMed  CAS  Google Scholar 

  29. Khair OA, Devalia JL, Abdelaziz MM, Sapsford RJ, Davies RJ. Effect of erythromycin on Haemophilus influenzae endotoxin-induced release of IL-6, IL-8 and sICAM-1 by cultured human bronchial epithelial cells. Eur Respir J. 1995;8(9):1451–7.

    PubMed  CAS  Google Scholar 

  30. Lin HC, Wang CH, Liu CY, Yu CT, Kuo HP. Erythromycin inhibits beta2-integrins (CD11b/CD18) expression, interleukin-8 release and intracellular oxidative metabolism in neutrophils. Respir Med. 2000;94(7):654–60.

    Article  PubMed  CAS  Google Scholar 

  31. Vanaudenaerde BM, Wuyts WA, Geudens N, Dupont LJ, Schoofs K, Smeets S, et al. Macrolides inhibit IL17-induced IL8 and 8-isoprostane release from human airway smooth muscle cells. Am J Transplant. 2007;7(1):76–82.

    Article  PubMed  CAS  Google Scholar 

  32. Willems-Widyastuti A, Vanaudenaerde BM, Vos R, Dilisen E, Verleden SE, De Vleeschauwer SI, et al. Azithromycin attenuates fibroblast growth factors induced vascular endothelial growth factor via p38(MAPK) signaling in human airway smooth muscle cells. Cell Biochem Biophys. 2011 Dec 29. [Epub ahead of print].

    Google Scholar 

  33. Daenas C, Hatziefthimiou AA, Gourgoulianis KI, Molyvdas PA. Azithromycin has a direct relaxant effect on precontracted airway smooth muscle. Eur J Pharmacol. 2006;553(1–3): 280–7.

    Article  PubMed  CAS  Google Scholar 

  34. Stamatiou R, Paraskeva E, Boukas K, Gourgoulianis KI, Molyvdas PA, Hatziefthimiou AA. Azithromycin has an antiproliferative and autophagic effect on airway smooth muscle cells. Eur Respir J. 2009;34(3):721–30.

    Article  PubMed  CAS  Google Scholar 

  35. McDonald PJ, Pruul H. Phagocyte uptake and transport of azithromycin. Eur J Clin Microbiol Infect Dis. 1991;10(10):828–33.

    Article  PubMed  CAS  Google Scholar 

  36. Idris S, Chilvers E, Haworth C, Mc Keon D, Condliffe A. Azithromycin therapy for neutrophilic airways disease: myth or magic? Thorax. 2009;64:186–9.

    Article  PubMed  Google Scholar 

  37. Meyer M, Huaux F, Gavilanes X, van den Brûle S, Lebecque P, Lo Re S, et al. Azithromycin reduces exagerated cytokine production by M1 alveolar macrophages in cystic fibrosis. Am J Respir Cell Mol Biol. 2009;41(5):590–602.

    Article  PubMed  CAS  Google Scholar 

  38. Bosnar M, Cuzic S, Bosnjak B, Nujić K, Ergović G, Marjanović N, et al. Azithromycin inhibits macrophage interleukin-1β production through inhibition of AP-1 in lipopolysaccharide-induced murine pulmonary neutrophilia. Int Immunopharmacol. 2011;11(4):424–34.

    Article  PubMed  CAS  Google Scholar 

  39. Hodge S, Hodge G, Jersmann H, Matthews G, Ahern J, Holmes M, et al. Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;178(2):139–48.

    Article  PubMed  CAS  Google Scholar 

  40. Yamauchi K, Shibata Y, Kimura T, Abe S, Inoue S, Osaka D, et al. Azithromycin suppresses interleukin-12p40 expression in lipopolysaccharide and interferon-gamma stimulated macrophages. Int J Biol Sci. 2009;5(7):667–78.

    Article  PubMed  CAS  Google Scholar 

  41. Murphy BS, Sundareshan V, Cory TJ, Hayes Jr D, Anstead MI, Feola DJ. Azithromycin alters macrophage phenotype. J Antimicrob Chemother. 2008;61(3):554–60.

    Article  PubMed  CAS  Google Scholar 

  42. Wilms EB, Touw DJ, Heijerman HG. Pharmacokinetics of azithromycin in plasma, blood, polymorphonuclear neutrophils and sputum during long-term therapy in patients with cystic fibrosis. Ther Drug Monit. 2006;28(2):219–25.

    Article  PubMed  CAS  Google Scholar 

  43. Miossec-Bartoli C, Pilatre L, Peyron P, N’Diaye EN, Collart-Dutilleul V, Maridonneau-Parini I, et al. The new ketolide HMR3647 accumulates in the azurophil granules of human polymorphonuclear cells. Antimicrob Agents Chemother. 1999;43(10):2457–62.

    PubMed  CAS  Google Scholar 

  44. Tsai WC, Standiford TJ. Immunomodulatory effects of macrolides in the lung: lessons from in-vitro and in-vivo models. Curr Pharm Des. 2004;10(25):3081–93.

    Article  PubMed  CAS  Google Scholar 

  45. Tamaoki J, Kadota J, Takizawa H. Clinical implications of the immunomodulatory effects of macrolides. Am J Med. 2004;117(9A):5S–11S.

    PubMed  CAS  Google Scholar 

  46. Miyazaki M, Zaitsu M, Honjo K, Ishii E, Hamasaki Y. Macrolide antibiotics inhibit prostaglandin E2 synthesis and mRNA expression of prostaglandin synthetic enzymes in human leukocytes. Prostaglandins Leukot Essent Fatty Acids. 2003;69(4):229–35.

    Article  PubMed  CAS  Google Scholar 

  47. Mizunoe S, Kadota J, Tokimatsu I, Kishi K, Nagai H, Nasu M. Clarithromycin and azithromycin induce apoptosis of activated lymphocytes via down-regulation of Bcl-xL. Int Immunopharmacol. 2004;4(9):1201–7.

    Article  PubMed  CAS  Google Scholar 

  48. Khan AA, Slifer TR, Araujo FG, Remington JS. Effect of clarithromycin and azithromycin on production of cytokines by human monocytes. Int J Antimicrob Agents. 1999;11(2):121–32.

    Article  PubMed  CAS  Google Scholar 

  49. Stupin Polancec D, Munic VK, Banjanac M, Vrancic M, Cuzic S, Belamaric D, et al. Azithromycin drives in vitro GM-CSF/IL-4-induced differentiation of human blood monocytes toward dendritic-like cells with regulatory properties. J Leukoc Biol. 2012;91(2):229–43.

    Article  Google Scholar 

  50. Sugiyama K, Shirai R, Mukae H, Ishimoto H, Nagata T, Sakamoto N, et al. Differing effects of clarithromycin and azithromycin on cytokine production by murine dendritic cells. Clin Exp Immunol. 2007;147(3):540–6.

    Article  PubMed  CAS  Google Scholar 

  51. Iwamoto S, Kumamoto T, Azuma E, Hirayama M, Ito M, Amano K, et al. The effect of azithromycin on the maturation and function of murine bone marrow-derived dendritic cells. Clin Exp Immunol. 2011;166(3):385–92.

    Article  PubMed  CAS  Google Scholar 

  52. Geudens N, Timmermans L, Vanhooren H, Vanaudenaerde BM, Vos R, Van De Wauwer C, et al. Azithromycin reduces airway inflammation in a murine model of lung ischaemia reperfusion injury. Transpl Int. 2008;21(7):688–95.

    Article  PubMed  CAS  Google Scholar 

  53. Remund K, Rechsteiner T, Guo Z, Rentsch K, Boehler A. The macrolide clarithromycin inhibits experimental post-transplant bronchiolitis obliterans. Exp Lung Res. 2009;35(10): 830–40.

    Article  PubMed  CAS  Google Scholar 

  54. Glojnaric I, Cuzic S, Erakovic-Haber V, Parnham MJ. The serum amyloid A response to sterile silver nitrate in mice and its inhibition by dexamethasone and macrolide antibiotics. Int Immunopharmacol. 2007;7(12):1544–51.

    Article  PubMed  CAS  Google Scholar 

  55. Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J. Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax. 2002;57(3):212–6.

    Article  PubMed  CAS  Google Scholar 

  56. Verleden S, Vandooren J, Vos R, Willems S, Dupont LJ, Verleden GM, et al. Azithromycin decreases MMP-9 expression in the airways of lung transplant recipients. Transpl Immunol. 2011;25(2):159–62.

    Article  PubMed  CAS  Google Scholar 

  57. Fietta AM, Meloni F. Lung transplantation: the role of azithromycin in the management of patients with bronchiolitis obliterans syndrome. Curr Med Chem. 2008;15(7):716–23.

    Article  PubMed  CAS  Google Scholar 

  58. Frederica M, Nadia S, Monica M, Alessandro C, Tiberio O, Francesco B, et al. Clinical and immunological evaluation of 12-month azithromycin therapy in chronic lung allograft rejection. Clin Transplant. 2011;25(4):E381–9.

    Article  Google Scholar 

  59. Togami K, Chono S, Morimoto K. Distribution characteristics of clarithromycin and azithromycin, macrolide anti-microbial agents used for treatment of respiratory infections, in lung epithelial lining fluid and alveolar macrophages. Biopharm Drug Dispos. 2011;32(7):389–97.

    Article  PubMed  CAS  Google Scholar 

  60. Zuckerman JM, Qamar F, Bono BR. Macrolides, ketolides, and glycylcyclines: azithromycin, clarithromycin, telithromycin, tigecycline. Infect Dis Clin North Am. 2009;23(4):997–1026, ix–x.

    Google Scholar 

  61. Beigelman A, Gunsten S, Mikols CL, Vidavsky I, Cannon CL, Brody SL, et al. Azithromycin attenuates airway inflammation in a noninfectious mouse model of allergic asthma. Chest. 2009;136(2):498–506.

    Article  PubMed  Google Scholar 

  62. Martinez FJ, Curtis JL, Albert R. Role of macrolide therapy in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2008;3(3):331–50.

    PubMed  CAS  Google Scholar 

  63. Sarahrudi K, Carretta A, Wisser W, Senbaklavaci O, Ploner M, Neuhauser P, et al. The value of switching from cyclosporine to tacrolimus in the treatment of refractory acute rejection and obliterative bronchiolitis after lung transplantation. Transpl Int. 2002;15(1):24–8.

    Article  PubMed  CAS  Google Scholar 

  64. Gerhardt SG, McDyer JF, Girgis RE, Conte JV, Yang SC, Orens JB. Maintenance azithromycin therapy for bronchiolitis obliterans syndrome: results of a pilot study. Am J Respir Crit Care Med. 2003;168:121–5.

    Article  PubMed  Google Scholar 

  65. Verleden GM, Dupont LJ. Azithromycin therapy for patients with bronchiolitis obliterans syndrome after lung transplantation. Transplantation. 2004;77:1465–7.

    Article  PubMed  CAS  Google Scholar 

  66. Yates B, Murphy DM, Forrest IA, Ward C, Rutherford RM, Fisher AJ, et al. Azithromycin reverses airflow obstruction in established bronchiolitis obliterans syndrome. Am J Respir Crit Care Med. 2005;172:772–5.

    Article  PubMed  Google Scholar 

  67. Shitrit D, Bendayan D, Gidon S, Saute M, Bakal I, Kramer MR. Long-term azithromycin use for treatment of bronchiolitis obliterans syndrome in lung transplant recipients. J Heart Lung Transplant. 2005;24:1440–3.

    Article  PubMed  Google Scholar 

  68. Verleden GM, Vanaudenaerde BM, Dupont LJ, Van Raemdonck DE. Azithromycin reduces airway neutrophilia and interleukin-8 in patients with bronchiolitis obliterans syndrome. Am J Respir Crit Care Med. 2006;174:566–70.

    Article  PubMed  CAS  Google Scholar 

  69. Vos R, Vanaudenaerde BM, Ottevaere A, Verleden SE, De Vleeschauwer SI, Willems-Widyastuti A, et al. Long-term azithromycin for bronchiolitis obliterans syndrome: divide and conquer? J Heart Lung Transplant. 2010;29(12):1358–68.

    Article  PubMed  Google Scholar 

  70. Porhownik NR, Batobara W, Kepron W, Unruh HW, Bshouty Z. Effect of maintenance azithromycin on established bronchiolitis obliterans syndrome in lung transplant patients. Can Respir J. 2008;15:199–202.

    PubMed  Google Scholar 

  71. Gottlieb J, Szangolies J, Koehnlein T, Golpon H, Simon A, Welte T. Long-term azithromycin for bronchiolitis obliterans syndrome after lung transplantation. Transplantation. 2008;85: 36–41.

    Article  PubMed  CAS  Google Scholar 

  72. Jain R, Hachem RR, Morrell MR, Trulock EP, Chakinala MM, Yusen RD, et al. Azithromycin is associated with increased survival in lung transplant recipients with bronchiolitis obliterans syndrome. J Heart Lung Transplant. 2010;29(5):531–7.

    Article  PubMed  Google Scholar 

  73. Benden C, Boehler A. Long-term clarithromycin therapy in the management of lung transplant recipients. Transplantation. 2009;87(10):1538–40.

    Article  PubMed  CAS  Google Scholar 

  74. Verleden GM, Dupont LJ, Vanhaecke J, Daenen W, Van Raemdonck DE. Effect of azithromycin on bronchiectasis and pulmonary function in a heart-lung transplant patient with severe chronic allograft dysfunction: a case report. J Heart Lung Transplant. 2005;24(8):1155–8.

    Article  PubMed  Google Scholar 

  75. de Jongh PA, Vos R, Verleden GM, Vanaudenaerde BM, Verschakelen JA. Thin-section computed tomography findings before and after azithromycin treatment of neutrophilic reversible lung allograft dysfunction. Eur Radiol. 2011;21(12):2466–74.

    Article  Google Scholar 

  76. Verleden SE, Vos R, Mertens V, Willems-Widyastuti A, De Vleeschauwer SI, Dupont LJ, et al. Airway protein diversity in bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant. 2011;30(6):667–73.

    Article  PubMed  Google Scholar 

  77. Mertens V, Blondeau K, Pauwels A, Farre R, Vanaudenaerde B, Vos R, et al. Azithromycin reduces gastroesophageal reflux and aspiration in lung transplant recipients. Dig Dis Sci. 2009;54(5):972–9.

    Article  PubMed  CAS  Google Scholar 

  78. Williams TJ, Verleden GM. Azithromycin: a plea for multicenter randomized studies in lung transplantation. Am J Respir Crit Care Med. 2005;172(6):657–9.

    Article  PubMed  Google Scholar 

  79. Corris PA, et al. Abstract presented at the 32nd Annual Meeting of the International Society for Heart and Lung Transplantation. Prague; 2012.

    Google Scholar 

  80. Vanaudenaerde BM, Vos R, Meyts I, Geudens N, De Wever W, Verbeken EK, et al. A dichotomy in bronchiolitis obliterans syndrome after lung transplantation revealed by azithromycin therapy. Eur Respir J. 2008;32(4):832–43.

    Article  PubMed  CAS  Google Scholar 

  81. Vanaudenaerde BM, Vos R, Meyts I, De Vleeschauwer SI, Verleden SE, Widyastuti-Willems A, et al. Macrolide therapy targets a specific phenotype in respiratory medicine: from clinical experience to basic science and back. Inflamm Allergy Drug Targets. 2008;7(4):279–87.

    Article  PubMed  CAS  Google Scholar 

  82. Vos R, Vanaudenaerde BM, Verleden SE, De Vleeschauwer SI, Willems-Widyastuti A, Van Raemdonck DE, et al. A randomised controlled trial of azithromycin to prevent chronic rejection after lung transplantation. Eur Respir J. 2011;37(1):164–72.

    Article  PubMed  CAS  Google Scholar 

  83. Dhillon GS, Valentine VG, Levitt J, Patel P, Gupta MR, Duncan SR, et al. Clarithromycin for prevention of bronchiolitis obliterans syndrome in lung allograft recipients. Clin Transplant. 2012;26:105–10.

    Article  PubMed  CAS  Google Scholar 

  84. Brown BA, Griffith DE, Girard W, Levin J, Wallace Jr RJ. Relationship of adverse events to serum drug levels in patients receiving high-dose azithromycin for mycobacterial lung disease. Clin Infect Dis. 1997;24(5):958–64.

    Article  PubMed  CAS  Google Scholar 

  85. Griffith DE, Brown BA, Girard WM, Griffith BE, Couch LA, Wallace Jr RJ. Azithromycin-containing regimens for treatment of Mycobacterium avium complex lung disease. Clin Infect Dis. 2001;32(11):1547–53.

    Article  PubMed  CAS  Google Scholar 

  86. Rubinstein E. Comparative safety of the different macrolide. Int J Antimicrob Agents. 2001;18(1):71–6.

    Article  Google Scholar 

  87. Ray WA, Murray KT, Hall K, Arbogast PG, Stein CM. Azithromycin and the risk of cardiovascular death. N Engl J Med. 2012;366(20):1881–90.

    Article  PubMed  CAS  Google Scholar 

  88. Westphal JF. Macrolide-induced clinically relevant drug interactions with cytochrome P-450A (CYP) 3A4: an update focused on clarithromycin, azithromycin and dirithromycin. Br J Clin Pharmacol. 2000;50(4):285–95.

    Article  PubMed  CAS  Google Scholar 

  89. Granowitz EV, Tabor KJ, Kirchhoffer JB. Potentially fatal interaction between azithromycin and disopyramide. Pacing Clin Electrophysiol. 2000;23(9):1433–5.

    Article  PubMed  CAS  Google Scholar 

  90. Hickey AJ, Lu D, Ashley ED, Stout J. Inhaled azithromycin therapy. J Aerosol Med. 2006;19(1):54–60.

    Article  PubMed  CAS  Google Scholar 

  91. Zhang Y, Wang X, Lin X, Liu X, Tian B, Tang X. High azithromycin loading powders for inhalation and their in vivo evaluation in rats. Int J Pharm. 2010;395(1–2):205–14.

    PubMed  CAS  Google Scholar 

  92. Malhotra-Kumar S, Lammens C, Coenen S, Van Herck K, Goossens H. Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide-resistant streptococci in healthy volunteers: a randomised, double-blind, placebo-controlled study. Lancet. 2007; 369(9560):482–90.

    Article  PubMed  CAS  Google Scholar 

  93. Tait-Kamradt A, Clancy J, Cronan M, Dib-Hajj F, Wondrack L, Yuan W, et al. mefE is necessary for the erythromycin-resistant M phenotype in Streptococcus pneumoniae. Antimicrob Agents Chemother. 1997;41(10):2251–5.

    PubMed  CAS  Google Scholar 

  94. Vanhoof R, Camps K, Carpentier M, De Craeye S, Frans J, Glupczynski Y, et al. 10th survey of antimicrobial resistance in noninvasive clinical isolates of Streptococcus pneumoniae collected in Belgium during winter 2007–2008. Pathol Biol. 2010;58(2):147–51.

    Article  PubMed  CAS  Google Scholar 

  95. Tramper-Stranders GA, Wolfs TF, Fleer A, Kimpen JL, van der Ent CK. Maintenance azithromycin treatment in pediatric patients with cystic fibrosis: long-term outcomes related to macrolide resistance and pulmonary function. Pediatr Infect Dis J. 2007;26(1):8–12.

    Article  PubMed  Google Scholar 

  96. Phaff SJ, Tiddens HA, Verbrugh HA, Ott A. Macrolide resistance of Staphylococcus aureus and Haemophilus species associated with long-term azithromycin use in cystic fibrosis. J Antimicrob Chemother. 2006;57(4):741–6.

    Article  PubMed  CAS  Google Scholar 

  97. Gillis RJ, White KG, Choi KH, Wagner VE, Schweizer HP, Iglewski BH. Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2005;49(9):3858–67.

    Article  PubMed  CAS  Google Scholar 

  98. Stover DE, Mangino D. Macrolides: a treatment alternative for bronchiolitis obliterans organizing pneumonia? Chest. 2005;128(5):3611–7.

    Article  PubMed  Google Scholar 

  99. Mann JM, Sha KK, Kline G, Breuer FU, Miller A. World Trade Center dyspnea: bronchiolitis obliterans with functional improvement: a case report. Am J Ind Med. 2005;48(3):225–9.

    Article  PubMed  Google Scholar 

  100. Khalid M, Al Saghir A, Saleemi S, Al Dammas S, Zeitouni M, Al Mobeireek A, et al. Azithromycin in bronchiolitis obliterans complicating bone marrow transplantation: a preliminary study. Eur Respir J. 2005;25(3):490–3.

    Article  PubMed  CAS  Google Scholar 

  101. Wuyts WA, Willems S, Vos R, Vanaudenaerde BM, De Vleeschauwer SI, Rinaldi M, et al. Azithromycin reduces pulmonary fibrosis in a bleomycin mouse model. Exp Lung Res. 2010;36(10):602–14.

    Article  PubMed  CAS  Google Scholar 

  102. Verleden GM, Vos R, De Vleeschauwer S, Verleden S, Dupont L, Nevens F, et al. Neutrophilic reversible airways dysfunction after liver transplantation: a case report. Transplant Proc. 2011;43(5):2078–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

G.M.V. is holder of the Glaxo Smith Kline (Belgium) chair in respiratory pharmacology at the KULeuven and is supported by the Research Foundation Flanders (FWO): G.0643.08 and G.0723.10 and Onderzoeksfonds KULeuven (OT/10/050). B.M.V., DEVR, and LJD are senior research fellows of the Research Foundation Flanders (FWO G.0518.06, G.0643.08, G.0723.10)

Conflict of Interest Statement: None of the authors has a financial relationship with a commercial entity that has an interest in the subject of the presented manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Vos M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vos, R., Verleden, S.E., Ruttens, D., Vanaudenaerde, B.M., Verleden, G.M. (2013). Macrolides for the Treatment and Prevention of BOS. In: Meyer, K., Glanville, A. (eds) Bronchiolitis Obliterans Syndrome in Lung Transplantation. Respiratory Medicine, vol 8. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7636-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7636-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7635-1

  • Online ISBN: 978-1-4614-7636-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics