Skip to main content

Technological Limitations in Sensing Material Applications

  • Chapter
  • First Online:
Handbook of Gas Sensor Materials

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 3961 Accesses

Abstract

Good technological effectiveness and processibility is an important criterion in selecting a material for gas sensor. Present short chapter considers this issue in relation to the various gas sensing materials such as polymers, solid electrolytes and 1D nanostructures. Chapter includes 2 figures, 1 Table and 39 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi G, Imanaka N, Tamura S (2001) Rare earth ion conduction in solids. J Alloys Compd 323–324:534–539

    Article  Google Scholar 

  • Arthur JA (2002) Molecular beam epitaxy. Surf Sci 500:189–217

    Article  CAS  Google Scholar 

  • Barsan N, Schweizer-Berberich M, Gopel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors. A status report. Fresenius J Anal Chem 365:287–304

    Article  CAS  Google Scholar 

  • Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119:105–118

    Article  Google Scholar 

  • Brinker CJ, Scherer GW (1989) Sol-gel science: the physics and chemistry of sol-gel processing. Academic, New York

    Google Scholar 

  • Bunshah RF (ed) (1994) Handbook of deposition technologies for films and coatings, 2nd edn. Noyes, Park Ridge, NJ

    Google Scholar 

  • Chang CY, Sze SM (eds) (1996) ULSI technology. McGraw-Hill, New York

    Google Scholar 

  • Chattopadhyay D, Galeska I, Papadimitrakopoulos F (2003) A route for bulk separation of semiconducting from metallic single wall carbon nanotubes. J Am Chem Soc 125:3370–3375

    Article  CAS  Google Scholar 

  • Choy KL (2003) Chemical vapour deposition of coatings. Prog Mater Sci 48(2):57–170

    Article  CAS  Google Scholar 

  • Christen HM, Eres G (2008) Recent advances in pulsed-laser deposition of complex oxides. J Phys Condens Matter 20:264005

    Article  CAS  Google Scholar 

  • Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292:706–709

    Article  CAS  Google Scholar 

  • Dai ZR, Pan ZW, Wang ZL (2003) Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv Funct Mater 13(1):9–24

    Article  Google Scholar 

  • Dubbe A (2003) Fundamentals of solid state ionic micro gas sensors. Sens Actuators B 88:138–148

    Article  CAS  Google Scholar 

  • Glocker DA, Shah I (eds) (1995) Handbook of thin film process technology. Institute of Physics, Bristol, UK

    Google Scholar 

  • Hecht G, Richter F, Hahn J (eds) (1994) Thin films. DGM Informationgessellschaft, Oberursel, Germany

    Google Scholar 

  • Hitchman ML, Jensen KF (1993) CVD: principles and applications. Academic, San Diego, CA

    Google Scholar 

  • Hubbard KJ, Schlom DG (1996) Thermodynamic stability of binary oxides in contact with silicon. J Mater Res 11:2757–2776

    Article  CAS  Google Scholar 

  • Hull R (ed) (1999) Properties of crystalline silicon. INSPEC, London

    Google Scholar 

  • Imanaka N, Kobayashi Y, Tamura S, Adachi G (2000) Trivalent ion conducting solid electrolytes. Solid State Ionics 136(137):319–324

    Article  Google Scholar 

  • Jaworek A, Sobczyk AT (2008) Electrospraying route to nanotechnology: an overview. J Electrostat 66:197–219

    Article  CAS  Google Scholar 

  • Jia QX, Wu XD, Zhou DS, Foltyn SR, Tiwari P, Peterson D, Mitchell TE (1995) Deposition of epitaxial yttria-stabilized zirconia on single-crystal Si and subsequent growth of an amorphous SiO2 interlayer. Philos Mag Lett 72:385–391

    Article  CAS  Google Scholar 

  • Kondo H, Saji K, Takahashi H, Takeuchi M (1993) Thin-film air fuel ratio sensor. Sens Actuators B 13(14):49–52

    Article  CAS  Google Scholar 

  • Kong J, Dai H (2001) Full and modulated chemical gating of individual carbon nanotubes by organic amine compounds. J Phys Chem B 105:2890–2893

    Article  CAS  Google Scholar 

  • Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R 61:1–39

    Article  Google Scholar 

  • Korotcenkov G (ed) (2010) Chemical sensors: fundamentals of sensing materials. Vol. 1. General approaches. Momentum, New York

    Google Scholar 

  • Krupke R, Hennrich F, Lohneysen H, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347

    Article  CAS  Google Scholar 

  • Milchev A (2008) Electrocrystallization: nucleation and growth of nano-clusters on solid surfaces. Russ J Electrochem 44:619–645

    Article  CAS  Google Scholar 

  • Nenov TG, Yordanov SP (1996) Ceramic sensors: technology and applications. Technomic, Basel

    Google Scholar 

  • Pratt CM (2003) Effects of metal ions on the synthesis and properties of conducting polymers. PhD thesis, Kingston University, London, UK

    Google Scholar 

  • Prusseit W, Corsepius S, Zwerger M, Berberich P, Kinder H, Eibl O, Jaekel C, Breuer U, Kurz H (1992) Epitaxial YBa2Cu3O7−δ films on silicon using YSZ/Y2O3 buffer layers. Physica C 201:249–256

    Article  CAS  Google Scholar 

  • Randhaw H (1991) Review of plasma-assisted deposition processes. Thin Solid Films 196:329–349

    Article  Google Scholar 

  • Saji K, Kondo H, Takahashi H, Futata H, Angata K, Suzuki T (1993) Development of a thin-film oxygen sensor for combustion control of gas appliances. Sens Actuators B 13(14):695–696

    Article  Google Scholar 

  • Sze SM (ed) (1994) Semiconductor sensors. Wiley, New York

    Google Scholar 

  • Tiemann M (2008) Repeated templating. Chem Mater 20:961–971

    Article  CAS  Google Scholar 

  • Van Tassel JJ, Randall CA (2006) Mechanisms of electrophoretic deposition. Key Eng Mater 314:167–174

    Article  Google Scholar 

  • Vayssieres L (2007) An aqueous solution approach to advanced metal oxide arrays on substrates. Appl Phys A 89:1–8

    Article  CAS  Google Scholar 

  • Viswanathan V, Laha T, Balani K, Agarwal A, Seal S (2006) Challenges and advances in nanocomposite processing techniques. Mater Sci Eng R 54:121–285

    Article  Google Scholar 

  • Wang ZL (2004) Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology. Annu Rev Phys Chem 55:159–196

    Article  CAS  Google Scholar 

  • Will J, Mitterdorfer A, Kleinlogel C, Perednis D, Gauckler LJ (2000) Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics 131:79–96

    Article  CAS  Google Scholar 

  • Zheng M, Jagota A, Semke ED, Diner BA, McClean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Korotcenkov, G. (2014). Technological Limitations in Sensing Material Applications. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7388-6_27

Download citation

Publish with us

Policies and ethics