Skip to main content
Log in

An aqueous solution approach to advanced metal oxide arrays on substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Materials chemistry has emerged as one of the most consistent fabrication tools for the rational delivery of high purity functional nanomaterials, engineered from molecular to microscopic scale at low cost and large scale. An overview of the major achievements and latest advances of a recently developed growth concept and low temperature aqueous synthesis method, for the fabrication of purpose-built large bandgap metal oxide semiconductor materials and oriented nano-arrays is presented. Important insight of direct relevance for semiconductor technology, optoelectronics, photovoltaics and photocatalysis for solar hydrogen generation, are revealed by in-depth investigations of the electronic structure of metal oxide nanostructures with new morphology and architecture, carried out at synchrotron radiation facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.N.R. Rao, A. Mueller, A.K. Cheetham (Eds.), The Chemistry of Nanomaterials: Synthesis, Properties and Applications (Wiley-VCH, Weinheim, 2004)

  2. L. Vayssieres, A. Manthiram, in: Encyclopedia of Nanoscience and Nanotechnology, ed. by H.S. Nalwa (Amer. Sci., Stevenson Ranch, CA, 2004), vol. 8, pp. 147–166

  3. C. Ma, D. Moore, Y. Ding, J. Li, Z.L. Wang, Int. J. Nanotechnol. 1, 431 (2004)

    Google Scholar 

  4. B. Mayers, B. Gates, Y. Xia, Int. J. Nanotechnol. 1, 86 (2004)

    Google Scholar 

  5. J.X. Wang, X.W. Sun, Y. Yi, H. Huang, Y.C. Lee, O.K. Tan, L. Vayssieres, Nanotechnology 17, 4995 (2006)

    Article  ADS  Google Scholar 

  6. R. Soong, C. Montemagno, Int. J. Nanotechnol. 2, 371 (2005)

    Google Scholar 

  7. P.M. Kasili, T. Vo-Dinh, Int. J. Nanotechnol. 2, 397 (2005)

    Google Scholar 

  8. D. Zhou, D.-J. Kang, Int. J. Nanotechnol. 2, 440 (2005)

    Google Scholar 

  9. S.S. Mao, Int. J. Nanotechnol. 1, 42 (2004)

    Google Scholar 

  10. E. Ozbay, K. Guven, K. Aydin, M. Bayindir, Int. J. Nanotechnol. 1, 379 (2004)

    Google Scholar 

  11. C.X. Xu, X.W. Sun, Int. J. Nanotechnol. 1, 452 (2004)

    Google Scholar 

  12. H. Sugimura, Int. J. Nanotechnol. 2, 314 (2005)

    Google Scholar 

  13. N. Moszner, S. Klapdohr, Int. J. Nanotechnol. 1, 130 (2004)

    Google Scholar 

  14. L. Vayssieres, C.R. Chimie 9, 691 (2006)

    Google Scholar 

  15. L. Vayssieres, Int. J. Nanotechnol. 1, 1 (2004)

    Google Scholar 

  16. L. Vayssieres, Pure Appl. Chem. 78, 1745 (2006)

    Article  Google Scholar 

  17. L. Vayssieres, Pure Appl. Chem. 72, 47 (2000)

    Google Scholar 

  18. L. Vayssieres, Int. J. Nanotechnol. 2, 411 (2005)

    Google Scholar 

  19. L. Vayssieres, C. Chaneac, E. Tronc, J.-P. Jolivet, J. Colloid Interf. Sci. 205, 205 (1998)

    Article  Google Scholar 

  20. L. Vayssieres, N. Beermann, S.-E. Lindquist, A. Hagfeldt, Chem. Mater. 13, 233 (2001)

    Article  Google Scholar 

  21. L. Vayssieres, J.-H. Guo, J. Nordgren, J. Nanosci. Nanotechnol. 1, 385 (2001)

    Article  Google Scholar 

  22. L. Vayssieres, Adv. Mater. 15, 464 (2003)

    Article  Google Scholar 

  23. L. Vayssieres, K. Keis, S.-E. Lindquist, A. Hagfeldt, J. Phys. Chem. B 105, 3350 (2001)

    Article  Google Scholar 

  24. L. Vayssieres, K. Keis, A. Hagfeldt, S.-E. Lindquist, Chem. Mater. 13, 4395 (2001)

    Article  Google Scholar 

  25. L. Vayssieres, M. Graetzel, Angew. Chem. Int. Edit. 43, 3666 (2004)

    Article  Google Scholar 

  26. L. Vayssieres, in: Chemical Sensors VI: Chemical and Biological Sensors and Analytical Methods, ed. by C. Brukner-lea, P. Vanysek, G. Hunter, M. Egashira, N. Miura, F. Mizutani (Electrochem. Soc., Pennington, NJ, 2004), p. 322

  27. L. Vayssieres, L. Rabenberg, A. Manthiram, Nano Lett. 2, 1393 (2002)

    Article  Google Scholar 

  28. L. Vayssieres, A. Manthiram, J. Phys. Chem. B 107, 2623 (2003)

    Article  Google Scholar 

  29. T. Lindgren, L. Vayssieres, H. Wang, S.-E. Lindquist, in: Chemical Physics of Nanostructured Semiconductors, ed. by A.I. Kokorin, D.W. Bahnemann (VSP International Science Publishers, The Netherlands, 2003), pp. 83–110

  30. T. Lindgren, L. Vayssieres, H. Wang, S.-E. Lindquist, Sol. Energy Mater. Sol. Cells 71, 231 (2002)

    Google Scholar 

  31. N. Beermann, L. Vayssieres, S.-E. Lindquist, A. Hagfeldt, J. Electrochem. Soc. 147, 2456 (2000)

    Article  Google Scholar 

  32. L. Vayssieres, in: Nontraditional Approaches to Patterning, ed. by Y. Xia, C.D.E. Lakeman, J. Liu, S. Yang, (Mater. Res. Soc. Symp. Proc. EXS-2, Warrendale, PA, 2004), pp. 11–13

  33. J.-H. Guo, Int. J. Nanotechnol. 1, 193 (2004)

    Google Scholar 

  34. C.L. Dong, C. Persson, L. Vayssieres, A. Augustsson, T. Schmitt, M. Mattesini, R. Ahuja, C.L. Chang, J.-H. Guo, Phys. Rev. B 70, 195325 (2004)

    Article  ADS  Google Scholar 

  35. A. Henningsson, A. Stashans, A. Sandell, H. Rensmo, S. Södergren, L. Vayssieres, A. Hagfeldt, S. Lunell, H. Siegbahn, in: Advances in Quantum Chemistry, ed. by E.J. Brandas (Academic Press, New York, 2004), vol. 47, pp. 23–36

  36. J.-H. Guo, L. Vayssieres, C. Persson, R. Ahuja, B. Johansson, J. Nordgren, J. Phys.: Condens. Matter 14, 6969 (2002)

    Article  ADS  Google Scholar 

  37. Y. Matsumoto, J. Solid State Chem. 126, 227 (1996)

    Article  Google Scholar 

  38. L. Vayssieres, C. Saathe, S.M. Butorin, D.K. Shuh, J. Nordgren, J.-H. Guo, Adv. Mater. 17, 2320 (2005)

    Article  Google Scholar 

  39. C. Persson, C.L. Dong, L. Vayssieres, A. Augustsson, T. Schmitt, M. Mattesini, R. Ahuja, J. Nordgren, C.L. Chang, A. Ferreira da Silva, J.-H. Guo, Microelectronics J. 37, 686 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Vayssieres.

Additional information

PACS

73.22.-f; 73.61.Ga; 73.61.Le; 73.63.Bd

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vayssieres, L. An aqueous solution approach to advanced metal oxide arrays on substrates. Appl. Phys. A 89, 1–8 (2007). https://doi.org/10.1007/s00339-007-4039-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4039-0

Keywords

Navigation