Skip to main content

Respiratory and Cardiac Function Analysis on the Basis of Dynamic Chest Radiography

  • Chapter
  • First Online:
Computational Intelligence in Biomedical Imaging

Abstract

Dynamic chest radiography with computer analysis is expected to be a new type of functional imaging system. This chapter presents computerized methods for quantifying and visualizing cardiopulmonary function on dynamic chest radiographs. The measurement parameters are diaphragm motion, heart wall motion, pulmonary ventilation, and blood circulation. We will first introduce evaluation items, physiology, and diagnostic findings and then describe image analysis methods for each evaluation item. We pay particular attention to interframe subtraction and mapping technique, which play a critical role in the evaluation of pulmonary ventilation and blood circulation. We also discuss features, future perspectives, and issues related to dynamic chest radiography on the basis of preliminary clinical study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freeman LM, Stein EG, Sprayregen S, Chamarthy M, Haramati LB (2008) The current and continuing important role of ventilation-perfusion scintigraphy in evaluating patients with suspected pulmonary embolism. Semin Nucl Med 38:432–440

    Article  Google Scholar 

  2. Zöphel K, Bacher-Stier C, Pinkert J, Kropp J (2009) Ventilation/perfusion lung scintigraphy: what is still needed? A review considering technetium-99m-labeled macro-aggregates of albumin. Ann Nucl Med 23:1–16

    Article  Google Scholar 

  3. Goldin JG (2009) Imaging the lungs in patients with pulmonary emphysema. Radiology 24:163–170

    Google Scholar 

  4. Salito C, Aliverti A, Gierada DS, Deslée G, Pierce RA, Macklem PT, Woods JC (2009) Quantification of trapped gas with CT and 3 He MR imaging in a porcine model of isolated airway obstruction. Radiology 253:380–389

    Article  Google Scholar 

  5. Kiryu S, Loring SH, Mori Y, Rofsky NM, Hatabu H, Takahashi M (2006) Quantitative analysis of the velocity and synchronicity of diaphragmatic motion: dynamic MRI in different postures. Magn Reson Imaging 24:1325–1332

    Article  Google Scholar 

  6. Holmes JH, Korosec FR, Du J, O’Halloran RL, Sorkness RL, Grist TM, Kuhlman JE, Fain SB (2007) Imaging of lung ventilation and respiratory dynamics in a single ventilation cycle using hyperpolarized He-3 MRI. J Magn Reson Imaging 26:630–636

    Article  Google Scholar 

  7. Ohno Y, Koyama H, Nogami M, Takenaka D, Matsumoto S, Obara M, Sugimura K (2008) Dynamic oxygen-enhanced MRI versus quantitative CT: pulmonary functional loss assessment and clinical stage classification of smoking-related COPD. Am J Roentgenol 190:W93–W99

    Article  Google Scholar 

  8. Tokuda J, Schmitt M, Sun Y, Patz S, Tang Y, Mountford CE, Hata N, Wald LL, Hatabu H (2009) Lung motion and volume measurement by dynamic 3D MRI using a 128-channel receiver coil. Acad Radiol 16:22–27

    Article  Google Scholar 

  9. Silverman NR (1972) Clinical video-densitometry. Pulmonary ventilation analysis. Radiology 103:263–265

    Google Scholar 

  10. Silverman NR, Intaglietta M, Simon AL, Tompkins WR (1972) Determination of pulmonary pulsatile perfusion by fluoroscopic videodensitometry. J Appl Physiol 33:147–149

    Google Scholar 

  11. Silverman NR, Intaglietta M, Tompkins WR (1973) Pulmonary ventilation and perfusion during graded pulmonary arterial occlusion. J Appl Physiol 34:726–731

    Google Scholar 

  12. Bursch JH (1985) Densitometric studies in digital subtraction angiography: assessment of pulmonary and myocardial perfusion. Herz 10:208–214

    Google Scholar 

  13. Liang J, Jarvi T, Kiuru A, Kormano M, Svedström E (1985) Dynamic chest image analysis: model-based perfusion analysis in dynamic pulmonary imaging. J Appl Signal Process 5:437–448

    Google Scholar 

  14. Fujita H, Doi K, MacMahon H, Kume Y, Giger ML, Hoffmann KR, Katafuchi T, Ohara K, Chan HP (1987) Basic imaging properties of a large image intensifier-TV digital chest radiographic system. Invest Radiol 22:328–335

    Article  Google Scholar 

  15. Suwatanapongced T, Solne RM, Gierada DS, Position D (2000) Shape on standard chest radiographs in patients with normal, obstructive, and restrictive pulmonary function. Med Phys 217:647

    Google Scholar 

  16. Fraser RS, Muller NL, Colman NC, Pare PD (1999) Fraser and Pare’s diagnosis of diseases of the chest, 4th edn. W.B. Saunders Company, Philadelphia

    Google Scholar 

  17. Suga K, Tsukuda T, Awaya H, Takano K, Koike S, Matsunaga N, Sugi K, Esato K (1999) Impaired respiratory mechanics in pulmonary emphysema: evaluation with dynamic breathing MRI. J Magn Reson Imaging 10:510–520

    Article  Google Scholar 

  18. Hansen JT, Koeppen BM (2002) Cardiovascular physiology. In: Netter’s atlas of human physiology (Netter basic science). Icon Learning Systems, Teterboro

    Google Scholar 

  19. West JB (2000) Ventilation – how gas gets to the alveoli. In: Respiratory physiology – the essentials, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 11–19

    Google Scholar 

  20. Squire LF, Novelline RA (1988) Fundamentals of radiology, 4th edn. Harvard University Press, Cambridge

    Google Scholar 

  21. Tanaka R, Sanada S, Okazaki N, Kobayashi T, Fujimura M, Yasui M, Matsui T, Nakayama K, Nanbu Y, Matsui O (2006) Evaluation of pulmonary function using breathing chest radiography with a dynamic flat-panel detector (FPD): primary results in pulmonary diseases. Invest Radiol 41:735–745

    Article  Google Scholar 

  22. Tanaka R, Sanada S, Fujimura M, Yasui M, Tsuji S, Hayashi N, Okamoto H, Nanbu Y, Matsui O (2010) Ventilatory impairment detection based on distribution of respiratory-induced changes in pixel values in dynamic chest radiography: a feasibility study. Int J Comput Assist Radiol Surg 6:103–110

    Article  Google Scholar 

  23. Tanaka R, Sanada S, Okazaki N, Kobayashi T, Suzuki M, Matsui T, Matsui O (2008) Detectability of regional lung ventilation with flat-panel detector-based dynamic radiography. J Digit Imaging 21:109–120

    Article  Google Scholar 

  24. Heyneman LE (2005) The chest radiograph: reflections on cardiac physiology. Radiological Society of North America. Scientific Assembly and Annual Meeting Program 2005, p 145

    Google Scholar 

  25. Goodman LR (2006) Felson’s principles of chest roentgenology, a programmed text. W B Saunders Co, Philadelphia

    Google Scholar 

  26. Turner AF, Lau FY, Jacobson G (1972) A method for the estimation of pulmonary venous and arterial pressures from the routine chest roentgenogram. Am J Roentgenol Radium Ther Nucl Med 116:97–106

    Article  Google Scholar 

  27. Chang CH (1962) The normal roentgenographic measurement of the right descending pulmonary artery in 1,085 cases. Am J Roentgenol Radium Ther Nucl Med 87:929–935

    Google Scholar 

  28. Pistolesi M, Milne EN, Miniati M, Giuntini C (1984) The vascular pedicle of the heart and the vena azygos. Part II: acquired heart disease. Radiology 152:9–17

    Google Scholar 

  29. Tanaka R, Sanada S, Fujimura M, Yasui M, Nakayama K, Matsui T, Hayashi N, Matsui O (2008) Development of functional chest imaging with a dynamic flat-panel detector (FPD). Radiol Phys Technol 1:137–143

    Article  Google Scholar 

  30. International atomic energy agency (1996) International basic safety standards for protection against ionizing radiation and for the safety of radiation sources. International atomic energy agency (IAEA), Vienna

    Google Scholar 

  31. Tanaka R, Sanada S, Fujimura M, Yasui M, Tsuji S, Hayashi N, Okamoto H, Nanbu Y, Matsui O (2010) Development of pulmonary blood flow evaluation method with a dynamic flat-panel detector (FPD): quantitative correlation analysis with findings on perfusion scan. Radiol Phys Technol 3:40–45

    Article  Google Scholar 

  32. Tanaka R, Sanada S, Fujimura M, Yasui M, Tsuji S, Hayashi N, Okamoto H, Nanbu Y, Matsui O (2009) Pulmonary blood flow evaluation using a dynamic flat-panel detector: feasibility study with pulmonary diseases. Int J Comput Assist Radiol Surg 4:449–454

    Article  Google Scholar 

  33. Tanaka R, Sanada S, Tsujioka K, Matsui T, Takata T, Matsui O (2008) Development of a cardiac evaluation method using a dynamic flat-panel detector (FPD) system: a feasibility study using a cardiac motion phantom. Radiol Phys Technol 1:27–32

    Article  Google Scholar 

  34. Tanaka R, Sanada S, Okazaki N, Kobayashi T, Nakayama K, Matsui T, Hayashi N, Matsui O (2006) Quantification and visualization of relative local ventilation on dynamic chest radiographs. In: Proceedings of SPIE, medical imaging, The International Society for optical engineering, vol 6143, San Diego, pp 62432Y1–62432Y8

    Google Scholar 

  35. Tanaka R, Sanada S, Kobayashi T, Suzuki M, Matsui T, Matsui O (2006) Computerized methods for determining respiratory phase on dynamic chest radiographs obtained by a dynamic flat-panel detector (FPD) system. J Digit Imaging 19:41–51

    Article  Google Scholar 

  36. Tanaka R, Sanada S, Kobayashi T, Suzuki M, Matsui T, Inoue H (2004) Breathing chest radiography using a dynamic flat-panel detector (FPD) with computer analysis for a screening examination. Med Phys 31:2254–2262

    Article  Google Scholar 

  37. Tanaka R, Sanada S, Kobayashi T, Suzuki M, Matsui T, Hayashi N, Nanbu Y (2003) Automated analysis for the respiratory kinetics with the screening dynamic chest radiography using a flat-panel detector system. In: Proceedings of computer assisted radiology and surgery, pp 179–186

    Google Scholar 

  38. Xu XW, Doi K (1995) Image feature analysis for computer-aided diagnosis: accurate determination of ribcage boundary in chest radiographs. Med Phys 22:617–626

    Article  Google Scholar 

  39. Li L, Zheng Y, Kallergi M, Clark RA (2001) Improved method for automatic identification of lung regions on chest radiographs. Acad Radiol 8:629–638

    Article  Google Scholar 

  40. Tanaka R, Sanada S, Matsui T, Hayashi N, Matsui O (2008) Sequential dual-energy subtraction technique with a dynamic flat-panel detector (FPD): primary study for image-guided radiation therapy (IGRT). Radiol Phys Technol 1:144–150

    Article  Google Scholar 

  41. Tanaka R, Sanada S, Fujimura M, Yasui M, Tsuji, S, Hayashi N, Okamoto H, Nanbu Y, Matsui O (2011) Ventilation-perfusion study without contrast media in dynamic chest radiography. In:Proceedings of SPIE, medical imaging, The International Society for optical engineering, vol 7965, pp 79651Y1–79651Y17

    Google Scholar 

  42. Tsuchiya Y, Kodera Y, Tanaka R, Sanada S (2009) Quantitative kinetic analysis of lung nodules using the temporal subtraction technique in dynamic chest radiographies performed with a flat panel detector. J Digit Imaging 22:126–135

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rie Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tanaka, R., Sanada, S. (2014). Respiratory and Cardiac Function Analysis on the Basis of Dynamic Chest Radiography. In: Suzuki, K. (eds) Computational Intelligence in Biomedical Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7245-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7245-2_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7244-5

  • Online ISBN: 978-1-4614-7245-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics