Skip to main content

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 45))

  • 2312 Accesses

Abstract

Whenever numerical algorithms are employed for a reliable computational forecast, they need to allow for an error control in the final quantity of interest. The discretization error control is of some particular importance in computational PDEs (CPDEs) where guaranteed upper error bound (GUB) are of vital relevance. After a quick overview over energy norm error control in second-order elliptic PDEs, this paper focuses on three particular aspects: first, the variational crimes from a nonconforming finite element discretization and guaranteed error bounds in the discrete norm with improved postprocessing of the GUB; second, the reliable approximation of the discretization error on curved boundaries; and finally, the reliable bounds of the error with respect to some goal functional, namely, the error in the approximation of the directional derivative at a given point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ainsworth, M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42(6), 2320–2341 (2004)

    Article  MathSciNet  Google Scholar 

  2. Ainsworth, M.: A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements. SIAM J. Sci. Comput. 30(1), 189–204 (2007/2008)

    Google Scholar 

  3. Bangerth, W., Rannacher, R.: Adaptive finite element methods for differential equations. In: Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2003)

    MATH  Google Scholar 

  4. Bartels, S., Carstensen, C., Klose, R.: An experimental survey of a posteriori Courant finite element error control for the Poisson equation. Adv. Comput. Math. 15(1–4), 79–106 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Braess, D.: Finite elements. In: Theory, Fast Solvers, and Applications in Elasticity Theory, 3rd edn. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  7. Braess, D.: An a posteriori error estimate and a comparison theorem for the nonconforming P 1 element. Calcolo 46(2), 149–155 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Braess, D., Schöberl, J.: Equilibrated residual error estimator for edge elements. Math. Comp. 77(262), 651–672 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C., Carstensen, C.: Finite Element Methods, Encyclopedia of Computational Mechanics (Chap. 4). Wiley, New York (2004)

    Google Scholar 

  10. Carstensen, C.: A unifying theory of a posteriori finite element error control. Numer. Math. 100(4), 617–637 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carstensen, C., Merdon, C.: Estimator competition for Poisson problems. J. Comp. Math. 28(3), 309–330 (electronic) (2010)

    Google Scholar 

  12. Carstensen, C., Merdon, C.: Computational survey on a posteriori error estimators for nonconforming finite element methods for Poisson problems. J. Comput. Appl. Math. 249, 74–94 (2013). http://dx.doi.org/10.1016/j.cam.2012.12.021. DOI: 10.1016/j.cam.2012.12.021

  13. Carstensen, C., Merdon, C.: Effective postprocessing for equilibration a posteriori error estimators. Numer. Math., 123(3), 425–459 (2013). http://dx.doi.org/10.1007/s00211-012-0494-4. DOI: 10.1007/s00211-012-0494-4

  14. Carstensen, C., Merdon, C.: A posteriori error estimator competition for conforming obstacle problems. Numer. Methods Partial Differential Eq. 29, 667–692 (2013). doi: 10.1002/num.21728

    Article  MathSciNet  MATH  Google Scholar 

  15. Carstensen, C., Merdon, C.: Refined fully explicit a posteriori residual-based error control (2013+) (submitted)

    Google Scholar 

  16. Carstensen, C., Eigel, M., Hoppe, R.H.W., Loebhard, C.: Numerical mathematics: Theory, methods and applications. Numer. Math. Theory Methods Appl. 5(4), 509–558 (2012)

    Article  MathSciNet  Google Scholar 

  17. Laugesen, R.S., Siudeja, B.A.: Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality. J. Differ. Equ. 249(1), 118–135 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Luce, R., Wohlmuth, B.I.: A local a posteriori error estimator based on equilibrated fluxes. SIAM J. Numer. Anal. 42(4), 1394–1414 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mommer, M.S., Stevenson, R.: A goal-oriented adaptive finite element method with convergence rates. SIAM J. Numer. Anal. 47(2), 861–886 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Prager, W., Synge, J.L.: Approximations in elasticity based on the concept of function space. Q. Appl. Math. 5, 241–269 (1947)

    MathSciNet  MATH  Google Scholar 

  21. Prudhomme, S., Oden, J.T.: On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput. Methods Appl. Mech. Eng. 176(1–4), 313–331 (1999). New Advances in Computational Methods (Cachan, 1997)

    Google Scholar 

  22. Repin, S.: A posteriori estimates for partial differential equations. In: Radon Series on Computational and Applied Mathematics, vol. 4. Walter de Gruyter, Berlin (2008)

    Google Scholar 

  23. Vohralík, M.: A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations. SIAM J. Numer. Anal. 45(4), 1570–1599 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was written while the first author enjoyed the kind hospitality of the Oxford PDE Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Carstensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Carstensen, C., Merdon, C., Neumann, J. (2013). Aspects of Guaranteed Error Control in CPDEs. In: Iliev, O., Margenov, S., Minev, P., Vassilevski, P., Zikatanov, L. (eds) Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications. Springer Proceedings in Mathematics & Statistics, vol 45. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7172-1_6

Download citation

Publish with us

Policies and ethics