Skip to main content

Improving Conservation for First-Order System Least-Squares Finite-Element Methods

  • Conference paper
  • First Online:
Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 45))

Abstract

The first-order system least-squares (FOSLS) finite element method for solving partial differential equations has many advantages, including the construction of symmetric positive definite algebraic linear systems that can be solved efficiently with multilevel iterative solvers. However, one drawback of the method is the potential lack of conservation of certain properties. One such property is conservation of mass. This paper describes a strategy for achieving mass conservation for a FOSLS system by changing the minimization process to that of a constrained minimization problem. If the space of corresponding Lagrange multipliers contains the piecewise constants, then local mass conservation is achieved similarly to the standard mixed finite-element method. To make the strategy more robust and not add too much computational overhead to solving the resulting saddle-point system, an overlapping Schwarz process is used.

Mathematics Subject Classification (2010): 65F10, 65N20, 65N30

The work of the author “P.S. Vassilevski” was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker, G.A., Jureidini, W.N., Karakashian, O.A.: Piecewise solenoidal vector-fields and the Stokes problem.  SIAM J. Numer. Anal. 27(6), 1466–1485 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barth, T.: On the role of involutions in the discontinuous Galerkin discretization of Maxwell and magnetohydrodynamic systems.  In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds.) Compatible Spatial Discretizations, pp. 69–88. Springer, New York (2006)

    Chapter  Google Scholar 

  3. Berndt, M., Manteuffel, T.A., McCormick, S.F.: Local error estimates and adaptive refinement for first-order system least squares (FOSLS).  Electron. Trans. Numer. Anal. 6, 35–43 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Bochev, P., Gunzburger, M.D.: Analysis of least-squares finite-element methods for the Stokes equations.  Math. Comput. 63(208), 479–506 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bochev, P.B., Gunzburger, M.D.: A locally conservative least-squares method for Darcy flows.  Commun. Numer. Meth. Eng. 24(2), 97–110 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bochev, P., Cai, Z., Manteuffel, T.A., McCormick, S.F.: Analysis of velocity-flux first-order system least-squares principles for the Navier-Stokes equations: part I.  SIAM J. Numer. Anal. 35(3), 990–1009 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bochev, P., Manteuffel, T.A., McCormick, S.F.: Analysis of velocity-flux least-squares principles for the Navier-Stokes equations: part II.  SIAM J. Numer. Anal. 36(4), 1125–1144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brackbill, J., Barnes, D.C.: The effect of nonzero ∇  ⋅B on the numerical solution of the magnetohydrodynamic equations.  J. Comput. Phys. 35(3), 426–430 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bramble, J., Kolev, T., Pasciak, J.: A least-squares approximation method for the time-harmonic Maxwell equations.  J. Numer. Math. 13(4), 237 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner, S.C., Scott, L.R.: Mathematical Theory of Finite Element Methods, 2nd edn.  Springer, New York (2002)

    Book  MATH  Google Scholar 

  11. Brezina, M., Garcia, J., Manteuffel, T., McCormick, S., Ruge, J., Tang, L.: Parallel adaptive mesh refinement for first-order system least squares.  Numer. Lin. Algebra Appl. 19, 343–366 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Elements Methods.  Springer Series in Computational Mathematics. Springer, Berlin (1991)

    Book  Google Scholar 

  13. Cai, Z., Starke, G.: Least-squares methods for linear elasticity.  SIAM J. Numer. Anal. 42(2), 826–842 (electronic) (2004).  doi:10.1137/S0036142902418357.  http://dx.doi.org.ezproxy.library.tufts.edu/10.1137/S0036142902418357

  14. Cai, Z., Lazarov, R., Manteuffel, T.A., McCormick, S.F.: First-order system least squares for second-order partial differential equations: part I.  SIAM J. Numer. Anal. 31, 1785–1799 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cai, Z., Manteuffel, T.A., McCormick, S.F.: First-order system least squares for second-order partial differential equations 2.  SIAM J. Numer. Anal. 34(2), 425–454 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carey, G.F., Pehlivanov, A.I., Vassilevski, P.S.: Least-squares mixed finite element methods for non-selfadjoint elliptic problems II: performance of block-ILU factorization methods.  SIAM J. Sci. Comput. 16, 1126–1136 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cockburn, B., Kanschat, G., Schotzau, D.: A locally conservative LDG method for the incompressible Navier-Stokes equations.  Math. Comput. 74(251), 1067–1095 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations.  J. Sci. Comput. 31, 61–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. De Sterck, H., Manteuffel, T., McCormick, S., Nolting, J., Ruge, J., Tang, L.: Efficiency-based h- and hp-refinement strategies for finite element methods. Numer. Lin. Algebra Appl. 15, 89–114 (2008)

    Article  MATH  Google Scholar 

  20. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes Equations, revised edn.  Springer, Berlin (1979)

    Google Scholar 

  21. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms (Springer Series in Computational Mathematics).  Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  22. Heys, J.J., Lee, E., Manteuffel, T.A., McCormick, S.F.: On mass-conserving least-squares methods.  SIAM J. Sci. Comput. 28(5), 1675–1693 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Heys, J.J., Lee, E., Manteuffel, T.A., McCormick, S.F.: An alternative least-squares formulation of the Navier-Stokes equations with improved mass conservation.  J. Comput. Phys. 226(1), 994–1006 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Heys, J.J., Lee, E., Manteuffel, T.A., McCormick, S.F., Ruge, J.W.: Enhanced mass conservation in least-squares methods for Navier-Stokes equations.  SIAM J. Sci. Comput. 31(3), 2303–2321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Karakashian, O., Jureidini, W.: A nonconforming finite element method for the stationary Navier-Stokes equations.  SIAM J. Numer. Anal. 35(1), 93–120 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lax, P.D.: Functional analysis.  Wiley-Interscience, New York (2002)

    MATH  Google Scholar 

  27. Lee, E., Manteuffel, T.A.: FOSLL* method for the eddy current problem with three-dimensional edge singularities.  SIAM J. Numer. Anal. 45(2), 787–809 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Manteuffel, T.A., McCormick, S.F., Ruge, J., Schmidt, J.G.: First-order system LL* (FOSLL*) for general scalar elliptic problems in the plane.  SIAM J. Numer. Anal. 43(5), 2098–2120 (2006)

    Article  MathSciNet  Google Scholar 

  29. Münzenmaier, S., Starke, G.: First-order system least squares for coupled Stokes-Darcy flow.  SIAM J. Numer. Anal. 49(1), 387–404 (2011).  doi:10.1137/100805108.  http://dx.doi.org.ezproxy.library.tufts.edu/10.1137/100805108

  30. Pehlivanov, A.I., Carey, G.F.: Error-estimates for least-squares mixed finite-elements.  ESAIM Math. Model. Numer. Anal. 28(5), 499–516 (1994)

    MathSciNet  MATH  Google Scholar 

  31. Pehlivanov, A.I., Carey, G.F., Vassilevski, P.S.: Least-squares mixed finite element methods for non-selfadjoint elliptic problems I: error analysis.  Numer. Math. 72, 501–522 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pontaza, J.P., Reddy, J.N.: Space-time coupled spectral/$hp$ least-squares finite element formulation for the incompressible Navier-Stokes equations.  J. Comput. Phys. 197(2), 418–459 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Saad, Y.: Iterative Methods for Sparse Linear Systems.  Society for Industrial & Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  34. Starke, G.: A first-order system least squares finite element method for the shallow water equations. SIAM J. Numer. Anal. 42(6), 2387–2407 (electronic) (2005). doi:10.1137/S0036142903438124. http://dx.doi.org.ezproxy.library.tufts.edu/10.1137/S0036142903438124

    Google Scholar 

  35. Toselli, A., Widlund, O.B.: Domain Decomposition Methods—Algorithms and Theory.  Springer, New York (2005)

    MATH  Google Scholar 

  36. Vanka, S.P.: Block-implicit multigrid solution of Navier-Stokes equations in primitive variables.  J. Comput. Phys. 65(1), 138–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vassilevski, P.S.: Multilevel Block Factorization Preconditioners.  Matrix-based Analysis and Algorithms for Solving Finite Element Equations. Springer, New York (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Vassilevski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Adler, J.H., Vassilevski, P.S. (2013). Improving Conservation for First-Order System Least-Squares Finite-Element Methods. In: Iliev, O., Margenov, S., Minev, P., Vassilevski, P., Zikatanov, L. (eds) Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications. Springer Proceedings in Mathematics & Statistics, vol 45. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7172-1_1

Download citation

Publish with us

Policies and ethics