Skip to main content

Compensation of Rate-Dependent Hysteresis in a Piezomicropositioning Actuator

  • Chapter
  • First Online:
Smart Materials-Based Actuators at the Micro/Nano-Scale
  • 1566 Accesses

Abstract

Piezomicropositioning actuators exhibit strong rate-dependent hysteresis nonlinearities that affect the accuracy of these micropositioning systems in open-loop system and may even lead to system instability of the closed-loop control system. Compensation of rate-dependent hysteresis effects using inverse rate-independent hysteresis models may yield high compensation error at high-excitation frequencies since these hysteresis effects increase as the excitation frequency of the input voltage increases. The inverse rate-dependent Prandtl–Ishlinskii model is utilized for compensation of the rate-dependent hysteresis nonlinearities in a piezomicropositioning stage. The exact inversion of the rate-dependent model is on hold under the condition that the distances between the thresholds do not decrease in time. The inverse of the rate-dependent model is applied as a feedforward compensator to compensate for the rate-dependent hysteresis nonlinearities of a piezomicropositioning actuator at different excitation frequencies between 0.1 and 50 Hz. The results show that the inverse compensator suppresses the hysteresis percent and the maximum positioning error in the output displacement of the piezomicropositioning actuator at different excitation frequencies, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Cavallo, C. Natale, S. Pirozzi, C.Visone, A. Formisano, Feedback control systems for micropositioning tasks with hysteresis compensation. IEEE Trans. Magn. 40(2), 876–879 (2004)

    Article  Google Scholar 

  2. M. Rakotondrabe, C. Clevy, P. Lutz, Complete open loop control of hysteretic, creeped, and oscillating piezoelectric cantilevers. IEEE Trans. Autom. Sci. Eng. 7(3), 440–450 (2010)

    Article  Google Scholar 

  3. Y. Li, Q. Xu, A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nanomanipulation. IEEE Trans. Autom. Sci. Eng. 8(2), 265–279 (2011)

    Article  Google Scholar 

  4. D. Davinoa, C. Nataleb, S. Pirozzib, C. Visone, A phenomenological dynamic model of a magnetostrictive actuator. Physica B 343(1–4), 112116 (2004)

    Google Scholar 

  5. B. Choi, M. Han, Vibration control of a rotating cantilevered beam using piezoactuators: experimental work. J. Sound Vib. 277(1–2), 436–442 (2004)

    Article  Google Scholar 

  6. B. Agrawal, M. Elshafei, G. Song, Adaptive antenna shape control using piezoelectric actuators. Acta Astronaut. 40(11), 821–826 (1997)

    Article  Google Scholar 

  7. P. Krejčí, M. Al Janaideh, F. Deasy, Inversion of hysteresis and creep operators. Physica B 407(9), 1354–1356 (2012)

    Article  Google Scholar 

  8. J. Park, K. Yoshida, S. Yokoto, Resonantly driven piezoelectric micropump-fabrication of a micropump having high power density. Mechatronics 9(7), 687–702 (1999)

    Article  Google Scholar 

  9. B. Mokaberi, A. Requicha, Compensation of scanner creep and hysteresis for AFM nanomanipulation. IEEE Trans. Autom. Sci. Eng. 5(2), 197–206 (2008)

    Article  Google Scholar 

  10. G. Tao, P. Kokotovic, Adaptive control of plants with unknown hysteresis. IEEE Trans. Automat. Contr. 40(2), 200–212 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Al Janaideh, S. Rakheja, C.-Y. Su, Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator. Mechatronics 17(5), 656–670 (2009)

    Article  Google Scholar 

  12. S. Viswamurthy, R. Ganguli, Modeling and compensation of piezoceramic actuator hysteresis for helicopter vibration control. Sensor Actuator A: Phys. 135(2), 801–810 (2007)

    Article  Google Scholar 

  13. R. Ben Mrad, H. Hu, A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations. IEEE/ASME Trans. Mechatron. 7(4), 479–489 (2002)

    Article  Google Scholar 

  14. K. Leang, Q. Zou, S. Devasia, Feedforward control of piezoactuators in atomic force microscope systems: inversion-based compensation for dynamics and hysteresis. IEEE Contr. Syst. Mag. 19(1), 70–82 (2009)

    Article  MathSciNet  Google Scholar 

  15. M. Grossard, M. Boukallel, N. Chaillet, C. Rotinat-Libersa, Modeling and robust control strategy for a control-optimized piezoelectric microgripper. IEEE/ASME Trans. Mechatron. 16(4), 674–683 (2011)

    Article  Google Scholar 

  16. P. Ge, M. Jouaneh, Tracking control of a piezoceramic actuator. IEEE Trans. Contr. Syst. Technol. 4(3), 209–216 (1996)

    Article  Google Scholar 

  17. H. Hu, H. Georgiou, R. BenMrad, Enhancement of tracking ability in piezoceramic actuators subject to dynamic excitation conditions. IEEE/ASME Trans. Mechatron. 10(2), 230–240 (2005)

    Article  Google Scholar 

  18. G. Song, J. Zhao, X. Zhou, J. Abreu-Garcia, Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. IEEE/ASME Trans. Mechatron. 10(2), 198–209 (2005)

    Article  Google Scholar 

  19. A. Esbrook, X. Tan, H. Khalil, Control of systems with hysteresis via servocompensation and its application to nanopositioning. IEEE Trans. Contr. Syst. Technol. 1–12 (2012). doi:10.1109/TCST.2012.2192734

    Google Scholar 

  20. Y. Shan, K. Leang, Repetitive control with Prandtl–Ishlinskii hysteresis inverse for piezo-based nanopositioning, in Proceedings of the American Control Conference, St. Louis, MO, 2009, pp. 301–306

    Google Scholar 

  21. W. Ang, P. Khosla, C. Riviere, Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans. Mechatron. 12(2), 134–142 (2007)

    Article  Google Scholar 

  22. M. Al Janaideh, P. Krejčí, An inversion formula for a Prandtl–Ishlinskii operator with time dependent thresholds. Physica B 406(8), 1528–1532 (2011)

    Article  Google Scholar 

  23. P. Krejci, K. Kuhnen, Inverse control of systems with hysteresis and creep. IEE Proc. Contr. Theor. Appl. 148(3), 185–192 (2001)

    Article  Google Scholar 

  24. A. Bergqvist, On magnetic hysteresis modeling, Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden, 1994

    Google Scholar 

  25. P. Krejčí, Hysteresis and periodic solutions of semilinear and quasilinear wave equations. Math. Z. 193, 247–264 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Brokate, J. Sprekels, Hysteresis and Phase Transitions (Springer, New York, 1996)

    Book  MATH  Google Scholar 

  27. K. Kuhnen, P. Krejčí, Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems: a new preisach modeling approach. IEEE Trans. Automat. Contr. 54(3), 537–550 (2009)

    Article  Google Scholar 

  28. K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities—a modified Prandtl–Ishlinskii approach. Eur. J. Contr. 9(4), 407–418 (2003)

    Article  Google Scholar 

  29. C. Visone, M. Sjöström, Exact invertible hysteresis models based on play operators. Physica B 343(1–4), 148–152 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Al Janaideh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Janaideh, M.A. (2013). Compensation of Rate-Dependent Hysteresis in a Piezomicropositioning Actuator. In: Rakotondrabe, M. (eds) Smart Materials-Based Actuators at the Micro/Nano-Scale. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6684-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6684-0_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6683-3

  • Online ISBN: 978-1-4614-6684-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics