Skip to main content
Log in

Adaptive Control of Piezoelectric Actuators with Hysteresis and Disturbance Compensation

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In this manuscript, an adaptive control strategy is presented for piezoactuators with hysteresis and disturbance estimation. The adaptive control scheme learns the piezoelectric actuator’s inverse model with a Lyapunov-based adaptation law. Then, an adaptive estimator is used in a feedback loop to estimate hysteresis and disturbance. Therefore, the controller achieves accurate displacement tracking with hysteresis/disturbance uncertainties. Unlike many controllers, the proposed adaptive control scheme’s stability is guaranteed by Lyapunov direct method. The proposed controller’s performance in coping with hysteresis and disturbance is highlighted in different operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ang, W., Khosla, P., & Riviere, C. (2007). Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Transactions on Mechatronics, 12(2), 134–142.

    Article  Google Scholar 

  • Badel, A., Qiu, J., & Nakano, T. (2008). A new simple asymmetric hysteresis operator and its application to inverse control of piezoelectric actuators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control Society, 55(5), 1086–1094.

  • Bashash, S., & Jalili, N. (2009). Robust adaptive control of coupled parallel piezo-flexural nanopositioning stages. IEEE/ASME Transactions on Mechatronics, 14(1), 11–20.

  • Chaoui, H., & Sicard, P. (2011). Adaptive displacement tracking control of piezo-actuated manipulation mechanisms with hysteresis and disturbance. In IEEE international workshop on robotic and sensors environments.

  • Chaoui, H., Sicard, P., & Sawan, M. (2010). High precision ann-based adaptive displacement tracking of piezoelectric actuators for MEMS. In IEEE circuits and systems international conference

  • Devasia, S., Eleftheriou, E., & Moheimani, S. (2007). A survey of control issues in nanopositioning. IEEE Transactions on Control Systems Technology, 15(5), 802–823.

    Article  Google Scholar 

  • Freeman, R. A., & Kokotovic, P. V. (1996). Lyapunov design. The Control Handbook, 77, 932–940.

    Google Scholar 

  • Gu, G. Y., Zhu, L. M., & Su, C. Y. (2014). Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified prandtlishlinskii model. IEEE Transactions on Industrial Electronics, 61(3), 1583–1595.

    Article  Google Scholar 

  • Huang, S., Tan, K. K., & Lee, T. H. (2009). Adaptive sliding-mode control of piezoelectric actuators. IEEE Transactions on Industrial Electronics, 56(9), 3514–3522.

    Article  Google Scholar 

  • Kongthon, J., & Devasia, S. (2013). Iterative control of piezoactuator for evaluating biomimetic, cilia-based micromixing. IEEE/ASME Transactions on Mechatronics, 18(3), 944–953.

    Article  Google Scholar 

  • Leang, K., Zou, Q., & Devasia, S. (2009). Feedforward control of piezoactuators in atomic force microscope systems. IEEE Control Systems Magazine, 29(1), 70–82.

    Article  MathSciNet  Google Scholar 

  • Liaw, H. C., Shirinzadeh, B., & Smith, J. (2009). Robust neural network motion tracking control of piezoelectric actuation systems for micro/nanomanipulation. IEEE Transaction on Neural Networks, 20(2), 356–367.

    Article  Google Scholar 

  • Li, Z., Su, C. Y., & Chai, T. (2014). Compensation of hysteresis nonlinearity in magnetostrictive actuators with inverse multiplicative structure for preisach model. IEEE Transactions on Automation Science and Engineering, 11(2), 613–619.

    Article  Google Scholar 

  • Qin, Y., Tian, Y., Zhang, D., Shirinzadeh, B., & Fatikow, S. (2013). A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications. IEEE/ASME Transactions on Mechatronics, 18(3), 981–989.

    Article  Google Scholar 

  • Rakotondrabe, M., Clevy, C., & Lutz, P. (2010). Complete open loop control of hysteretic, creeped, and oscillating piezoelectric cantilevers. IEEE Transactions on Automation Science and Engineering, 7(3), 440–450.

    Article  Google Scholar 

  • Shieh, H. J., & Hsu, C. H. (2008). An adaptive approximator-based backstepping control approach for piezoactuator-driven stages. IEEE Transactions on Industrial Electronics, 55(4), 1729–1738.

    Article  Google Scholar 

  • Xu, Q. (2013). Identification and compensation of piezoelectric hysteresis without modeling hysteresis inverse. IEEE Transactions on Industrial Electronics, 60(9), 3927–3937.

    Article  Google Scholar 

  • Yi, J., Chang, S., & Shen, Y. (2009). Disturbance-observer-based hysteresis compensation for piezoelectric actuators. IEEE/ASME Transactions on Mechatronics, 14(4), 456–464.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hicham Chaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaoui, H., Gualous, H. Adaptive Control of Piezoelectric Actuators with Hysteresis and Disturbance Compensation. J Control Autom Electr Syst 27, 579–586 (2016). https://doi.org/10.1007/s40313-016-0270-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-016-0270-2

Keywords

Navigation