Differentiating Chromosome Fragmentation and Premature Chromosome Condensation



The chromosome has long been viewed as a structure that ensures faithful segregation of the genetic materials to daughter cells. However, it is now apparent that the chromosome plays a central role in defining the genetic network through the genome context. One often-confused phenomenon bridging studies of interphase chromatin and mitotic chromosomes is chromosome pulverization, which has been inappropriately linked to premature chromosome condensation (PCC) and more recently confused with chromosome fragmentation (C-Frag), a major form of mitotic cell death. Recently there has been increased interest in genome alteration-mediated somatic cell evolution and its clinical implications, although a number of publications have continued to confuse these terminologies/concepts.

To alleviate confusion in this field we review both C-Frag and PCC. Discussion of C-Frag includes its morphological and mechanistic characterization, its relationship to genomic instability, and its utility. Discussion of PCC pertains to its mechanisms, definition, historical perspectives, and its application in basic research and clinical settings. C-Frag and PCC are then directly compared and contrasted to fully differentiate these two phenomena. Chromosome pulverization, chromosome shattering, and mitotic catastrophe are compared in relationship to both C-Frag and PCC. To avoid future confusion we suggest avoidance of the ambiguous term chromosome pulverization in favor of the more specific term C-Frag or PCC. Finally, future implications and perspectives of both C-Frag and PCC are discussed.


Okadaic Acid Mitotic Chromosome Mitotic Catastrophe Chromosomal Morphology Centrosome Amplification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alam MT, Kasatiya S (1976) Cytological effects of an organic phosphate pesticide on human cells in vitro. Can J Genet Cytol 18(4):665–671PubMedGoogle Scholar
  2. Balakrishnan S, Shirsath K, Bhat N, Anjaria K (2010) Biodosimetry for high dose accidental exposures by drug induced premature chromosome condensation (PCC) assay. Mutat Res 699(1–2):11–16. doi: 10.1016/j.mrgentox.2010.03.008 PubMedGoogle Scholar
  3. Balansky R, Adomat H, Bryson L (1994) Additive coclastogenicity of sodium selenite and caffeine in CHO cells treated with N-methyl-N′-nitro-N-nitrosoguanidine. Biol Trace Elem Res 42(1):53–61PubMedCrossRefGoogle Scholar
  4. Bezrookove V, Smits R, Moeslein G, Fodde R, Tanke HJ, Raap AK, Darroudi F (2003) Premature chromosome condensation revisited: a novel chemical approach permits efficient cytogenetic analysis of cancers. Genes Chromosomes Cancer 38(2):177–186PubMedCrossRefGoogle Scholar
  5. Bolzán AD, Bianchi MS (2003) Clastogenic effects of streptozotocin on human colon cancer cell lines with gene amplification. J Environ Pathol Toxicol Oncol 22(4):281–286PubMedCrossRefGoogle Scholar
  6. Brewen JG, Nettesheim P, Jones KP (1970) A host-mediated assay for cytogenetic mutagenesis: preliminary data on the effect of methyl methanesulfonate. Mutat Res 10(6):645–649PubMedCrossRefGoogle Scholar
  7. Brown EJ, Baltimore D (2000) ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14(4):397–402PubMedGoogle Scholar
  8. Casati A, Riboni R, Caprioli J, Nuzzo F, Mondello C (1995) Condensation anomalies and exclusion in micronuclei of rearranged chromosomes in human fibroblasts cultured in vitro. Chromosoma (Berl) 104(2):137–142CrossRefGoogle Scholar
  9. Castedo M, Perfettini JL, Roumier T, Kroemer G (2002) Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ 9(12):1287–1293PubMedCrossRefGoogle Scholar
  10. Castedo M, Perfettini JL, Roumier T, Valent A, Raslova H, Yakushijin K, Horne D, Feunteun J, Lenoir G, Medema R, Vainchenker W, Kroemer G (2004a) Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene 23(25):4362–4370PubMedCrossRefGoogle Scholar
  11. Castedo M, Perfettini JL, Roumie T, Andreau K, Medema R, Kroemer G (2004b) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23(16):2825–2837PubMedCrossRefGoogle Scholar
  12. Castedo M, Perfettini JL, Roumier T, Yakushijin K, Horne D, Medema R, Kroemer G (2004c) The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene 23(25):4353–4361PubMedCrossRefGoogle Scholar
  13. Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B (1999) 14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature (Lond) 401(6753):616–620CrossRefGoogle Scholar
  14. Chenet-Monte C, Mohammad F, Celluzzi CM, Schaffer PA, Farber FE (1986) Herpes simplex virus gene products involved in the induction of chromosomal aberrations. Virus Res 6(3):245–260PubMedCrossRefGoogle Scholar
  15. Cheng X, Pantelias GE, Okayasu R, Cheong N, Iliakis G (1993) Mitosis-promoting factor activity of inducer mitotic cells may affect radiation yield of interphase chromosome breaks in the premature chromosome condensation assay. Cancer Res 53(23):5592–5596PubMedGoogle Scholar
  16. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, Nezi L, Protopopov A, Chowdhury D, Pellman D (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature (Lond) 482(7383):53–58. doi: 10.1038/nature10802 CrossRefGoogle Scholar
  17. Cremer C, Cremer T, Simickova M (1980) Induction of chromosome shattering and micronuclei by ultraviolet light and caffeine. I. Temporal relationship and antagonistic effects of the four deoxyribonucleosides. Environ Mutagen 2(3):339–351PubMedCrossRefGoogle Scholar
  18. Eki T, Enomoto T, Murakami Y, Miyazawa H, Hanaoka F, Yamada M (1987) Characterization of revertants derived from a mouse DNA temperature-sensitive mutant strain, tsFT20, which contains heat-labile DNA polymerase alpha activity. Exp Cell Res 171(1):24–36PubMedCrossRefGoogle Scholar
  19. Fernandez JL, Costas E, Goyanes VJ (1990) Chromosome structure and condensation in relation to DNA integrity. Cytobios 63(254–255):193–204PubMedGoogle Scholar
  20. Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida MC (1997) Uniparental chromosome elimination in the early embryogenesis of the inviable salmonid hybrids between masu salmon female and rainbow trout male. Chromosoma (Berl) 106(1):44–52CrossRefGoogle Scholar
  21. Fukasawa K, Wiener F, VandeWoude GF, Mai SB (1997) Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene 15(11):1295–1302PubMedCrossRefGoogle Scholar
  22. Ganasoundari A, Devi PU, Rao BS (1998) Enhancement of bone marrow radioprotection and reduction of WR-2721 toxicity by Ocimum sanctum. Mutat Res 397(2):303–312PubMedCrossRefGoogle Scholar
  23. Gao C, Miyazaki M, Ohashi R, Tsuji T, Inoue Y, Namba M (1999) Maintenance of near-diploid karyotype of PA-1 human ovarian teratocarcinoma cells due to death of polyploid cells by chromosome fragmentation/pulverization. Int J Mol Med 4(3):291–294PubMedGoogle Scholar
  24. Genghini R, Tiranti I, Segade G, Amado J, Wittouck P, Mian L (1998) In vivo effect on pig chromosomes of high dosage vaccine against classic swine fever. Mutat Res 422(2):357–365PubMedCrossRefGoogle Scholar
  25. Genghini R, Tiranti I, Wittouck P (2002) Pig chromosome aberrations after vaccination against classical swine fever in field trials. Vaccine 20(23–24):2873–2877PubMedCrossRefGoogle Scholar
  26. Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, Bruss C, Kumlehn J, Matzk F, Houben A (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17(9):2431–2438PubMedCrossRefGoogle Scholar
  27. Ghosh S, Paweletz N, Schroeter D (1992) Failure of kinetochore development and mitotic spindle formation in okadaic acid-induced premature mitosis in HeLa cells. Exp Cell Res 201(2):535–540PubMedCrossRefGoogle Scholar
  28. Gollin SM, Wray W, Hanks SK, Hittelman WN, Rao PN (1984) The ultrastructural organization of prematurely condensed chromosomes. J Cell Sci Suppl 1:203–221PubMedGoogle Scholar
  29. Gorelick R, Heng HH (2011) Sex reduces genetic variation: a multidisciplinary review. Evolution 65(4):1088–1098. doi: 10.1111/j.1558-5646.2010.01173.x PubMedCrossRefGoogle Scholar
  30. Grabovskaya IL, Tugizov SM, Glukhova LA, Kushch AA (1993) Cytogenetic analysis of human hepatocarcinoma cell line PLC-PRF-5 and its mutant clones with different degrees of cell differentiation. Cancer Genet Cytogenet 65(2):147–151PubMedCrossRefGoogle Scholar
  31. Hanks SK, Gollin SM, Rao PN, Wray W, Hittelman WN (1983) Cell cycle-specific changes in the ultrastructural organization of prematurely condensed chromosomes. Chromosoma (Berl) 88(5):333–342CrossRefGoogle Scholar
  32. Heng HH (2007) Elimination of altered karyotypes by sexual reproduction preserves species identity. Genome 50(5):517–524. doi:g07-039 pii10.1139/g07-039PubMedCrossRefGoogle Scholar
  33. Heng HH (2009) The genome-centric concept: resynthesis of evolutionary theory. Bioessays 31(5):512–525. doi: 10.1002/bies.200800182 PubMedCrossRefGoogle Scholar
  34. Heng HH (2013) 4-D genomics: genome dynamics and constraint in evolution. Springer, New York (in press)Google Scholar
  35. Heng HH, Stevens JB, Liu G, Bremer SW, Ye CJ (2004) Imaging genome abnormalities in cancer research. Cell Chromosome 3(1):1. doi: 10.1186/1475-9268-3-1 PubMedCrossRefGoogle Scholar
  36. Heng HH, Liu G, Bremer S, Ye KJ, Stevens J, Ye CJ (2006) Clonal and non-clonal chromosome aberrations and genome variation and aberration. Genome 49(3):195–204PubMedCrossRefGoogle Scholar
  37. Heng HH, Bremer SW, Stevens JB, Ye KJ, Liu G, Ye CJ (2009) Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective. J Cell Physiol 220(3):538–547. doi: 10.1002/jcp.21799 PubMedCrossRefGoogle Scholar
  38. Heng HH, Stevens JB, Bremer SW, Ye KJ, Liu G, Ye CJ (2010a) The evolutionary mechanism of cancer. J Cell Biochem 109(6):1072–1084PubMedGoogle Scholar
  39. Heng HH, Liu G, Stevens JB, Bremer SW, Ye KJ, Ye CJ (2010b) Genetic and epigenetic heterogeneity in cancer: the ultimate challenge for drug therapy. Curr Drug Targets 11(10):1304–1316PubMedCrossRefGoogle Scholar
  40. Heng HH, Liu G, Stevens JB, Bremer SW, Ye KJ, Abdallah BY, Horne SD, Ye CJ (2011a) Decoding the genome beyond sequencing: the new phase of genomic research. Genomics 98(4):242–252. doi: 10.1016/j.ygeno.2011.05.008 PubMedCrossRefGoogle Scholar
  41. Heng HH, Stevens JB, Bremer SW, Liu G, Abdallah BY, Ye CJ (2011b) Evolutionary mechanisms and diversity in cancer. Adv Cancer Res 112:217–253PubMedCrossRefGoogle Scholar
  42. Heng HH, Bremer SW, Stevens JB, Horne SD, Liu G, Abdallah BY, Ye KJ, Ye CJ (2013a) Chromosomal instability (CIN): what is it and why is it crucial to cancer evolution? Cancer Met Rev (in Press)Google Scholar
  43. Heng HH, Liu G, Stevens JB, Abdallah BY, Horne SD, Ye KJ, Bremer SW, Ye CJ (2013b) Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenet Genome Res (in press)Google Scholar
  44. Hübner B, Strickfaden H, Müller S, Cremer M, Cremer T (2009) Chromosome shattering: a mitotic catastrophe due to chromosome condensation failure. Eur Biophys J 38(6):729–747PubMedCrossRefGoogle Scholar
  45. Johnson RT, Rao PN (1970) Mammalian cell fusion: induction of premature chromosome condensation in interphase nuclei. Nature (Lond) 226(5247):717–722CrossRefGoogle Scholar
  46. Kastan M, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature (Lond) 432:316–323CrossRefGoogle Scholar
  47. Kato H, Sandberg AA (1967) Chromosome pulverization in human binucleate cells following colcemid treatment. J Cell Biol 34(1):35–45PubMedCrossRefGoogle Scholar
  48. Kato H, Sandberg AA (1968) Chromosome pulverization in chinese hamster cells induced by Sendai virus. J Natl Cancer Inst 41(5):1117–1123PubMedGoogle Scholar
  49. Kloosterman WP, Guryev V, van Roosmalen M, Duran KJ, de Bruijn E, Bakker SC, Letteboer T, van Nesselrooij B, Hochstenbach R, Poot M, Cuppen E (2011) Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet 20(10):1916–1924. doi: 10.1093/hmg/ddr073 PubMedCrossRefGoogle Scholar
  50. Knuutila S, Siimes M, Vuopio P (1981) Chromosome pulverization in blood diseases. Hereditas 95(1):15–24PubMedCrossRefGoogle Scholar
  51. Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA, Piacentini M, Nagata S, Melino G (2005) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12(S2):1463–1467PubMedCrossRefGoogle Scholar
  52. Lau YF, Brown RL, Arrighi FE (1977) Induction of premature chromosome condensationin CHO cells fused with polyethlyene glycol. Exp Cell Res 110:57–61PubMedCrossRefGoogle Scholar
  53. Lee MG, Nurse P (1987) Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature (Lond) 327(6117):31–35. doi: 10.1038/327031a0 CrossRefGoogle Scholar
  54. Liu G, Stevens JB, Abdallah BY, Horne S, Bremer SW, Ye CJ, Heng HH (2013) Genome chaos: survival strategy during crisis (submitted)Google Scholar
  55. Lovelace R (1954) Chromosome shattering by ultraviolet radiation (2650 A). Proc Natl Acad Sci U S A 40(12):1129–1135PubMedCrossRefGoogle Scholar
  56. Magalhães MC, Magalhães MM (1985) Effects of alpha-amanitin on the fine structure of adrenal fasciculata cells in the young rat. Tissue Cell 17(1):27–37PubMedCrossRefGoogle Scholar
  57. Martelli AM, Bareggi R, Bortul R, Grill V, Narducci P, Zweyer M (1997) The nuclear matrix and apoptosis. Histochem Cell Biol 108(1):1–10PubMedCrossRefGoogle Scholar
  58. Masui Y (2001) From oocyte maturation to the in vitro cell cycle: the history of discoveries of maturation-promoting factor (MPF) and cytostatic factor (CSF). Differentiation 69(1):1–17. doi: 10.1046/j.1432-0436.2001.690101.x PubMedCrossRefGoogle Scholar
  59. Masui Y, Markert CL (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177(2):129–145. doi: 10.1002/jez.1401770202 PubMedCrossRefGoogle Scholar
  60. Micronuclear chromosome pulverization may underlie chromothripsis (2012). Cancer Discov 2(3):OF5. doi: 10.1158/2159-8290.CD-RW2012-011
  61. Miura T, Blakely WF (2011) Optimization of calyculin A-induced premature chromosome condensation assay for chromosome aberration studies. Cytometry A 79(12):1016–1022. doi: 10.1002/cyto.a.21154 PubMedGoogle Scholar
  62. Nefíc H (2008) The genotoxicity of vitamin C in vitro. Bosn J Basic Med Sci 8(2):141–146PubMedGoogle Scholar
  63. Nghiem P, Park PK, Kim Y, Vaziri C, Schreiber SL (2001) ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc Natl Acad Sci U S A 98(16):9092–9097. doi: 10.1073/pnas.161281798 PubMedCrossRefGoogle Scholar
  64. Nichols WW, Levan A (1965) Measles associated chromosome breakage. Arch Gesamte Virusforsch 16:168–174PubMedCrossRefGoogle Scholar
  65. Norrby E, Levan A, Nichols WW (1966) The correlation between the chromosome pulverization effect and other biological activities of measles virus preparations. Exp Cell Res 41(3):483–491PubMedCrossRefGoogle Scholar
  66. Nurse P, Thuriaux P, Nasmyth K (1976) Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 146(2):167–178PubMedCrossRefGoogle Scholar
  67. Patet J, Huppert J, Fourcade A, Tapiero H (1986) Cytogenetic modifications of Friend leukemia cells resistant to adriamycin. Leuk Res 10(6):651–658PubMedCrossRefGoogle Scholar
  68. Peat DS, Stanley MA (1986) Chromosome damage induced by herpes simplex virus type 1 in early infection. J Gen Virol 67(10):2273–2277. doi: 10.1099/0022-1317-67-10-2273 PubMedCrossRefGoogle Scholar
  69. Potu N, Rao BW, Puck TT (1977) Premature chromosome condensation and cell cycle analysis. J Cell Physiol 91(1):131–141CrossRefGoogle Scholar
  70. Rao P (1982) The phenomenon of premature chromosome condensation. In: Rao P, Johnson R, Sperling K (eds) Premature chromosome condensation application in basic, clinical and mutation research. Academic, New York, pp 2–37Google Scholar
  71. Roninson IB, Broude EV, Chang BD (2001) If not apoptosis, then what?—Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat 4(5):303–313PubMedCrossRefGoogle Scholar
  72. Rybaczek D, Kowalewicz-Kulbat M (2011) Premature chromosome condensation induced by caffeine, 2-aminopurine, staurosporine and sodium metavanadate in S-phase arrested HeLa cells is associated with a decrease in Chk1 phosphorylation, formation of phospho-H2AX and minor cytoskeletal rearrangements. Histochem Cell Biol 135(3):263–280. doi: 10.1007/s00418-011-0793-3 PubMedCrossRefGoogle Scholar
  73. Sandberg AA (1978) Some comments regarding chromosome pulverization (premature chromosome condensation or PCC, prophasing). Virchows Arch B Cell Pathol 29(1–2):15–18PubMedGoogle Scholar
  74. Simon D, Knowles BB (1986) Hepatocellular carcinoma cell line and peripheral blood lymphocytes from the same patient contain common chromosomal alterations. Lab Invest 55(6):657–665PubMedGoogle Scholar
  75. Sirianni SR, Huang CC (1978) Effect of fungicide Folpet on growth and chromosomes of human lymphoid cell lines. Can J Genet Cytol 20(2):193–197PubMedGoogle Scholar
  76. Sperling K, Rao PN (1974a) The phenomenon of premature chromosome condensation: its relevance to basic and applied research. Humangenetik 23(4):235–258PubMedCrossRefGoogle Scholar
  77. Sperling K, Rao PN (1974b) Mammalian cell fusion. V. Replication behaviour of heterochromatin as observed by premature chromosome condensation. Chromosoma (Berl) 45(2):121–131CrossRefGoogle Scholar
  78. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA, McLaren S, Lin ML, McBride DJ, Varela I, Nik-Zainal S, Leroy C, Jia M, Menzies A, Butler AP, Teague JW, Quail MA, Burton J, Swerdlow H, Carter NP, Morsberger LA, Iacobuzio-Donahue C, Follows GA, Green AR, Flanagan AM, Stratton MR, Futreal PA, Campbell PJ (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40. doi: 10.1016/j.cell.2010.11.055 PubMedCrossRefGoogle Scholar
  79. Stevens JB, Liu G, Bremer SW, Ye KJ, Xu W, Xu J, Sun Y, Wu GS, Savasan S, Krawetz SA, Ye CJ, Heng HH (2007) Mitotic cell death by chromosome fragmentation. Cancer Res 67(16):7686–7694. doi: 10.1158/0008-5472.CAN-07-0472 PubMedCrossRefGoogle Scholar
  80. Stevens JB, Abdallah BY, Regan SM, Liu G, Bremer SW, Ye CJ, Heng HH (2010) Comparison of mitotic cell death by chromosome fragmentation to premature chromosome condensation. Mol Cytogenet 3:20PubMedCrossRefGoogle Scholar
  81. Stevens JB, Abdallah B, Liu G, Ye CJ, Horne SD, Wang G, Savasan S, Shekhar M, Krawetz SA, Huttemann M, Tainsky MA, Wu GS, Xie Y, Zhang K, Heng HH (2011a) Diverse system stresses: common mechanisms of chromosome fragmentation. Cell Death Dis 2:e178–e186PubMedCrossRefGoogle Scholar
  82. Stevens JB, Abdallah BY, Horne SD, Liu G, Bremer SW, Heng HH (2011b) Genetic and epigenetic heterogeneity in cancer. Encyc Life Sci doi: 10.1002/9780470015902.a0023592
  83. Stevens JB, Abdallah BY, Horne S, Bremer SW, Liu G, Ye CJ, Heng HH (2013a) Unstable genomes elevate transcriptome dynamics (submitted)Google Scholar
  84. Stevens JB, Horne SD, Abdallah BY, Ye CJ, Heng HH (2013a) Chromosomal instability and transcriptome dynamics in cancer. Cancer Met Rev (in Press)Google Scholar
  85. Stevens JB, Abdallah BY, Liu G, Horne SD, Bremer SW, Ye KJ, Huang JY, Kurkinen M, Ye CJ, Heng HH (2013b) Cell death heterogeneity. Cytogenet Genome Res (in press)Google Scholar
  86. Sudha T, Tsuji H, Sameshima M, Matsuda Y, Kaneda S, Nagai Y, Yamao F, Seno T (1995) Abnormal integrity of the nucleolus associated with cell cycle arrest owing to the temperature-sensitive ubiquitin-activating enzyme E1. Chromosome Res 3(2):115–123PubMedCrossRefGoogle Scholar
  87. Sutiaková I, Rimková S, Sutiak V, Porácová J, Krajnicáková M, Harichová D (2004) A possible relationship between viral infection and chromosome damage in breeding boars. Berl Munch Tierarztl Wochenschr 117(1–2):16–18PubMedGoogle Scholar
  88. Tapiero H, Patet J, Fourcade A, Huppert J (1986) Chromosomal changes associated with resistance to doxorubicin: correlation with tumorigenicity. Anticancer Res 6(2):203–208PubMedGoogle Scholar
  89. Terzoudi GI, Singh SK, Pantelias GE, Iliakis G (2008) Premature chromosome condensation reveals DNA-PK independent pathways of chromosome break repair. Int J Oncol 33(4):871–879PubMedGoogle Scholar
  90. Terzoudi GI, Donta-Bakoyianni C, Iliakis G, Pantelias GE (2010) Investigation of bystander effects in hybrid cells by means of cell fusion and premature chromosome condensation induction. Radiat Res 173(6):789–801. doi: 10.1667/RR2023.1 PubMedCrossRefGoogle Scholar
  91. Tsutsui T, Tamura Y, Hagiwara M, Miyachi T, Hikiba H, Kubo C, Barrett JC (2000) Induction of mammalian cell transformation and genotoxicity by 2-methoxyestradiol, an endogenous metabolite of estrogen. Carcinogenesis (Oxf) 21(4):735–740CrossRefGoogle Scholar
  92. Wasserman WJ, Masui Y (1976) A cytoplasmic factor promoting oocyte maturation: its extraction and preliminary characterization. Science 191(4233):1266–1268PubMedCrossRefGoogle Scholar
  93. Ye CJ, Liu G, Bremer SW, Heng HH (2007) The dynamics of cancer chromosomes and genomes. Cytogenet Genome Res 118(2–4):237–246PubMedCrossRefGoogle Scholar
  94. Yoon JW, Kim SN, Hahn EC, Kenyon AJ (1976) Lymphoproliferative diseases of fowl: chromosome breaks caused in lymphocytes by JM-V herpesvirus. J Natl Cancer Inst 56(4):757–762PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUSA
  2. 2.Department of PathologyWayne State University School of MedicineDetroitUSA
  3. 3.Karmanos Cancer InstituteDetroitUSA

Personalised recommendations