The Functionality of Prostate Cancer Predisposition Risk Regions Is Revealed by AR Enhancers

  • Houtan Noushmehr
  • Simon G. Coetzee
  • Suhn K. Rhie
  • Chunli Yan
  • Gerhard A. Coetzee


Prostate Cancer (PCa) genetic risk has recently been defined in numerous genome-wide association studies (GWAS), which revealed more than 50 disease-associated single nucleotide polymorphisms (SNPs), known as tagSNPs, each at a different locus. More than 80% of these tagSNPs are located in noncoding regions of the genome for which functionality remains unknown. We and others hypothesize that at least some of these SNPs affect noncoding genomic regulatory signatures such as enhancers. Many research laboratories including ours have profiled the genomic distribution of androgen receptor (AR) and the dynamic state of the PCa genome for active chromatin regions (H3K9,14ac), open chromatin regions (DNaseI), enhancers (H3K4me1/2), and active/engaged enhancers (H3K27ac). In order to identify candidate functional SNPs, which may confer risk associated with PCa, we recently developed an open-source (R/Bioconductor) package, called FunciSNP (Functional Integration of SNPs), which systematically integrates SNPs from the 1000 genomes project with these biologically active chromatin features. Here we report several potential AR enhancers, defined by genome-wide data and from chromatin biofeatures, which may be functionally involved in PCa risk.


Enhancer Androgen Receptor Occupied Regions (ARORs) Chromatin Genome Single Nucleotide Polymorphism Post-GWAS function 



Androgen receptor




Anrogen responsive element


Androgen receptor occupied regions


Genome-wide association studies


1000 genomes project


Single nucleotide polymorphisms


Functional Identification of SNPs


Linkage disequilibrium



The authors thank Charles Nicolet at the USC Epigenome Center for library construction and high throughput sequencing.


Original work reported here was funded by the National Institutes of Health (NIH) [CA109147, U19CA148537 and U19CA148107 to G.A.C.; 5T32CA009320-27 to H.N.] and David Mazzone Awards Program (G.A.C). Additionally, some of the scientific development and funding of this project were supported by the Genetic Associations and Mechanisms in Oncology (GAME-ON): a NCI Cancer Post-GWAS Initiative.


  1. 1.
    Visscher PM et al (2012) Five years of GWAS discovery. Am J Hum Genet 90(1):7–24PubMedCrossRefGoogle Scholar
  2. 2.
    Hindorff LA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106(23):9362–9367PubMedCrossRefGoogle Scholar
  3. 3.
    Coetzee SG et al (2012) FunciSNP: an R/bioconductor tool integrating functional non-coding data sets with genetic association studies to identify candidate regulatory SNPs. Nucl Acids Res 40:e139PubMedCrossRefGoogle Scholar
  4. 4.
    Coetzee GA (2012) The usefulness of prostate cancer genome-wide association studies. J Urol 187(1):9–10PubMedCrossRefGoogle Scholar
  5. 5.
    Coetzee GA et al (2010) A systematic approach to understand the functional consequences of non-protein coding risk regions. Cell Cycle 9(2):47–51CrossRefGoogle Scholar
  6. 6.
    Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25(2):276–308PubMedCrossRefGoogle Scholar
  7. 7.
    Bluemn EG, Nelson PS (2012) The androgen/androgen receptor axis in prostate cancer. Curr Opin Oncol 24(3):251–257PubMedCrossRefGoogle Scholar
  8. 8.
    Denmeade SR, Isaacs JT (2002) A history of prostate cancer treatment. Nat Rev Cancer 2(5):389–396PubMedCrossRefGoogle Scholar
  9. 9.
    Cai C, Balk SP (2011) Intratumoral androgen biosynthesis in prostate cancer pathogenesis and response to therapy. Endocr Relat Cancer 18(5):R175–R182PubMedCrossRefGoogle Scholar
  10. 10.
    Lonergan PE, Tindall DJ (2011) Androgen receptor signaling in prostate cancer development and progression. J Carcinog 10:20PubMedCrossRefGoogle Scholar
  11. 11.
    Montgomery RB et al (2008) Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68(11):4447–4454PubMedCrossRefGoogle Scholar
  12. 12.
    Mostaghel EA et al (2010) Variability in the androgen response of prostate epithelium to 5alpha-reductase inhibition: implications for prostate cancer chemoprevention. Cancer Res 70(4):1286–1295PubMedCrossRefGoogle Scholar
  13. 13.
    (2011) Triple-acting drug boosts prostate cancer survival. Cancer Discov 1(7): OF1Google Scholar
  14. 14.
    Tran C et al (2009) Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324(5928):787–790PubMedCrossRefGoogle Scholar
  15. 15.
    Mukherji D, Pezaro CJ, De-Bono JS (2012) MDV3100 for the treatment of prostate cancer. Expert Opin Investig Drugs 21(2):227–233PubMedCrossRefGoogle Scholar
  16. 16.
    Grasso CS et al (2012) The mutational landscape of lethal castration-resistant prostate cancer. Nature 487:239–243PubMedCrossRefGoogle Scholar
  17. 17.
    Chen Y et al (2012) Systematic evaluation of factors influencing ChIP-seq fidelity. Nat Methods 9:609–614PubMedCrossRefGoogle Scholar
  18. 18.
    Qin B et al (2012) CistromeMap: a knowledgebase and web server for ChIP-Seq and DNase-Seq studies in mouse and human. Bioinformatics 28(10):1411–1412PubMedCrossRefGoogle Scholar
  19. 19.
    Lupien M et al (2008) FoxA1 translates epigenetic signatures into enhancer-driven ­lineage-specific transcription. Cell 132(6):958–970PubMedCrossRefGoogle Scholar
  20. 20.
    Andreu-Vieyra C et al (2011) Dynamic nucleosome-depleted regions at androgen receptor enhancers in the absence of ligand in prostate cancer cells. Mol Cell Biol 31(23):4648–4662PubMedCrossRefGoogle Scholar
  21. 21.
    Wang Q et al (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138(2):245–256PubMedCrossRefGoogle Scholar
  22. 22.
    Wang D et al (2011) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474(7351):390–394PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang C et al (2011) Definition of a FoxA1 Cistrome that is crucial for G1 to S-phase cell-cycle transit in castration-resistant prostate cancer. Cancer Res 71(21):6738–6748PubMedCrossRefGoogle Scholar
  24. 24.
    Dryhurst D et al (2012) Histone H2A.Z prepares the prostate specific antigen (PSA) gene for androgen receptor-mediated transcription and is upregulated in a model of prostate cancer progression. Cancer Lett 315(1):38–47PubMedCrossRefGoogle Scholar
  25. 25.
    Cai C et al (2011) Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 20(4):457–471PubMedCrossRefGoogle Scholar
  26. 26.
    Sahu B et al (2011) Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J 30(19):3962–3976PubMedCrossRefGoogle Scholar
  27. 27.
    Taslim C et al (2012) Integrated analysis identifies a class of androgen-responsive genes regulated by short combinatorial long-range mechanism facilitated by CTCF. Nucleic Acids Res 40(11):4754–4764PubMedCrossRefGoogle Scholar
  28. 28.
    Song L et al (2011) Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res 21(10):1757–1767PubMedCrossRefGoogle Scholar
  29. 29.
    He HH et al (2012) Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res 22(6):1015–1025PubMedCrossRefGoogle Scholar
  30. 30.
    Myers RM et al (2011) A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 9(4):e1001046CrossRefGoogle Scholar
  31. 31.
    Rivera A et al (2005) Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet 14(21):3227–3236PubMedCrossRefGoogle Scholar
  32. 32.
    Hosking FJ, Dobbins SE, Houlston RS (2011) Genome-wide association studies for detecting cancer susceptibility. Br Med Bull 97:27–46PubMedCrossRefGoogle Scholar
  33. 33.
    Park JH et al (2010) Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet 42(7):570–575PubMedCrossRefGoogle Scholar
  34. 34.
    Kruglyak L (2008) The road to genome-wide association studies. Nat Rev Genet 9(4):314–318PubMedCrossRefGoogle Scholar
  35. 35.
    Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6(2):95–108PubMedCrossRefGoogle Scholar
  36. 36.
    Hardy J, Singleton A (2009) Genomewide association studies and human disease. N Engl J Med 360(17):1759–1768PubMedCrossRefGoogle Scholar
  37. 37.
    International HapMap Consortium (2003) The International HapMap Project. Nature 426(6968):789–796CrossRefGoogle Scholar
  38. 38.
    Pennisi E (2010) Genomics. 1000 Genomes Project gives new map of genetic diversity. Science 330(6004):574–575PubMedCrossRefGoogle Scholar
  39. 39.
    Consortium TGP (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073CrossRefGoogle Scholar
  40. 40.
    Freedman ML et al (2011) Principles for the post-GWAS functional characterization of cancer risk loci. Nat Genet 43(6):513–518PubMedCrossRefGoogle Scholar
  41. 41.
    Rosenbloom KR et al (2011) ENCODE whole-genome data in the UCSC Genome Browser: update 2012. Nucl Acids Res 40:D912–D917PubMedCrossRefGoogle Scholar
  42. 42.
    Jia L et al (2009) Functional enhancers at the gene-poor 8q24 cancer-linked locus. PLoS Genet 5(8):e1000597PubMedCrossRefGoogle Scholar
  43. 43.
    Heinz S et al (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38(4):576–589PubMedCrossRefGoogle Scholar
  44. 44.
    Takata R et al (2010) Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat Genet 42(9):751–754PubMedCrossRefGoogle Scholar
  45. 45.
    Eeles RA et al (2009) Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat Genet 41(10):1116–1121PubMedCrossRefGoogle Scholar
  46. 46.
    Kote-Jarai Z et al (2011) Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nat Genet 43(8):785–791PubMedCrossRefGoogle Scholar
  47. 47.
    Schumacher FR et al (2011) Genome-wide association study identifies new prostate cancer susceptibility loci. Hum Mol Genet 20(19):3867–3875PubMedCrossRefGoogle Scholar
  48. 48.
    Murabito JM et al (2007) A genome-wide association study of breast and prostate cancer in the NHLBI’s Framingham Heart Study. BMC Med Genet 8(Suppl 1):S6PubMedCrossRefGoogle Scholar
  49. 49.
    Gudmundsson J et al (2009) Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nat Genet 41(10):1122–1126PubMedCrossRefGoogle Scholar
  50. 50.
    Eeles RA et al (2008) Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 40(3):316–321PubMedCrossRefGoogle Scholar
  51. 51.
    Thomas G et al (2008) Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 40(3):310–315PubMedCrossRefGoogle Scholar
  52. 52.
    Zheng SL et al (2007) Association between two unlinked loci at 8q24 and prostate cancer risk among European Americans. J Natl Cancer Inst 99(20):1525–1533PubMedCrossRefGoogle Scholar
  53. 53.
    Yeager M et al (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39(5):645–649PubMedCrossRefGoogle Scholar
  54. 54.
    Gudmundsson J et al (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39(5):631–637PubMedCrossRefGoogle Scholar
  55. 55.
    Duggan D et al (2007) Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst 99(24):1836–1844PubMedCrossRefGoogle Scholar
  56. 56.
    Liu H, Wang B, Han C (2011) Meta-analysis of genome-wide and replication association studies on prostate cancer. Prostate 71(2):209–224PubMedCrossRefGoogle Scholar
  57. 57.
    Chung CC et al (2011) Fine mapping of a region of chromosome 11q13 reveals multiple independent loci associated with risk of prostate cancer. Hum Mol Genet 20(14):2869–2878PubMedCrossRefGoogle Scholar
  58. 58.
    Zheng SL et al (2009) Two independent prostate cancer risk-associated Loci at 11q13. Cancer Epidemiol Biomarkers Prev 18(6):1815–1820PubMedCrossRefGoogle Scholar
  59. 59.
    Bonilla C et al (2011) Prostate cancer susceptibility Loci identified on chromosome 12 in African Americans. PLoS One 6(2):e16044PubMedCrossRefGoogle Scholar
  60. 60.
    Sun J et al (2008) Evidence for two independent prostate cancer risk-associated loci in the HNF1B gene at 17q12. Nat Genet 40(10):1153–1155PubMedCrossRefGoogle Scholar
  61. 61.
    Haiman CA et al (2011) Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nat Genet 43(6):570–573PubMedCrossRefGoogle Scholar
  62. 62.
    Hsu FC et al (2009) A novel prostate cancer susceptibility locus at 19q13. Cancer Res 69(7):2720–2723PubMedCrossRefGoogle Scholar
  63. 63.
    Sun J et al (2009) Sequence variants at 22q13 are associated with prostate cancer risk. Cancer Res 69(1):10–15PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Houtan Noushmehr
    • 1
    • 2
    • 3
    • 4
    • 5
  • Simon G. Coetzee
    • 1
    • 6
    • 3
    • 4
  • Suhn K. Rhie
    • 1
    • 6
    • 3
  • Chunli Yan
    • 1
    • 6
    • 3
  • Gerhard A. Coetzee
    • 1
    • 6
    • 3
    • 7
  1. 1.Norris Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Preventive Medicine, Keck School of MedicineUniversity of Souther CaliforniaLos AngelesUSA
  3. 3.Department of Urology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  4. 4.Department of Genetics, Medical School of Ribeirão PretoUniversity of São Paulo, Ribeirão PretoSão PauloBrazil
  5. 5.Epigenome Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  6. 6.Department of Preventive Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  7. 7.USC/Norris Cancer CenterLos AngelesUSA

Personalised recommendations