Skip to main content

Role of Oxidative Stress and Reactive Oxygen Radicals in the Pathogenesis of Systemic Sclerosis

  • Chapter
  • First Online:
Studies on Arthritis and Joint Disorders

Abstract

Systemic sclerosis (SSc) is an autoimmune connective tissue disease which causes progressive fibrosis of skin and numerous internal organs. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been elucidated, there is strong evidence to support the concept that oxidative stress mediated by an excessive generation of oxidative free radicals plays a crucial role. Elevated levels of markers of oxidative stress and reduced levels of antioxidants have been found in SSc patients, and the most commonly studied animal models of SSc are induced by chemical agents that generate oxidative stress. In this chapter, the available evidence for the participation of oxidative stress in SSc pathogenesis will be reviewed emphasizing the link between free radicals and the process of fibrosis and the potentially beneficial effects of antioxidant treatment for the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADA:

Adenosine deaminase

Col I:

Type I collagen

ECM:

Extracellular matrix

ECS:

Extract from fruits of Capparis spinosa L.

EGCG:

Epigallocatechin-3-gallate

ERK1/2:

Extracellular signal-regulated kinase 1/2

ET-1:

Endothelin 1

IPF:

Idiopathic pulmonary fibrosis

NAC:

N-acetylcysteine

NOX:

NADPH oxidase

PDGFR:

Platelet-derived growth factor receptor

PG:

Prostaglandin

((PHTE)(2)NQ):

2,3-bis(phenyltellanyl)naphthoquinone

PTP1B:

Protein tyrosine phosphatase 1B

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SSc:

Systemic sclerosis

TGF-β1:

Transforming growth factor-β1

References

  1. Katsumoto TR, Whitfield ML, Connolly MK (2011) The pathogenesis of systemic sclerosis. Annu Rev Pathol 6:509–537

    Article  PubMed  CAS  Google Scholar 

  2. Gabrielli A, Avvedimento EV, Krieg T (2009) Scleroderma. N Engl J Med 360:1989–2003

    Article  PubMed  CAS  Google Scholar 

  3. Jimenez SA, Hitraya E, Varga J (1996) Pathogenesis of scleroderma. Collagen. Rheum Dis Clin North Am 22:647–674

    Article  PubMed  CAS  Google Scholar 

  4. Varga JA, Trojanowska M (2008) Fibrosis in systemic sclerosis. Rheum Dis Clin North Am 34:115–143

    Article  PubMed  Google Scholar 

  5. Murrell DF (1993) A radical proposal for the pathogenesis of scleroderma. J Am Acad Dermatol 28:78–85

    Article  PubMed  CAS  Google Scholar 

  6. Herrick AL, Matucci Cerinic M (2001) The emerging problem of oxidative stress and the role of antioxidants in systemic sclerosis. Clin Exp Rheumatol 19:4–8

    PubMed  CAS  Google Scholar 

  7. Gabrielli A, Svegliati S, Moroncini G, Pomponio G, Santillo M, Avvedimento EV (2008) Oxidative stress and the pathogenesis of scleroderma: the Murrell’s hypothesis revisited. Semin Immunopathol 30:329–337

    Article  PubMed  CAS  Google Scholar 

  8. Lundberg AC, Akesson A, Akesson B (1992) Dietary intake and nutritional status in patients with systemic sclerosis. Ann Rheum Dis 51:1143–1148

    Article  PubMed  CAS  Google Scholar 

  9. Herrick AL, Rieley F, Schofield D, Hollis S, Braganza JM, Jayson MI (1994) Micronutrient antioxidant status in patients with primary Raynaud’s phenomenon and systemic sclerosis. J Rheumatol 21:1477–1483

    PubMed  CAS  Google Scholar 

  10. Ogawa F, Shimizu K, Muroi E, Hara T, Sato S (2011) Increasing levels of serum antioxidant status, total antioxidant power, in systemic sclerosis. Clin Rheumatol 30:921–925

    Article  PubMed  Google Scholar 

  11. Sambo P, Jannino L, Candela M et al (1999) Monocytes of patients with systemic sclerosis (scleroderma) spontaneously release in vitro increased amounts of superoxide anion. J Invest Dermatol 112:78–84

    Article  PubMed  CAS  Google Scholar 

  12. Allanore Y, Borderie D, Perianin A, Lemarechal H, Ekindjian OG, Kahan A (2005) Nifedipine protects against overproduction of superoxide anion by monocytes from patients with systemic sclerosis. Arthritis Res Ther 7:R93–R100

    Article  PubMed  CAS  Google Scholar 

  13. Servettaz A, Guilpain P, Goulvestre C et al (2007) Radical oxygen species production induced by advanced oxidation protein products predicts clinical evolution and response to treatment in systemic sclerosis. Ann Rheum Dis 66:1202–1209

    Article  PubMed  CAS  Google Scholar 

  14. Sambo P, Baroni SS, Luchetti M et al (2001) Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway. Arthritis Rheum 44:2653–2664

    Article  PubMed  CAS  Google Scholar 

  15. Avouac J, Borderie D, Ekindjian OG, Kahan A, Allanore Y (2010) High DNA oxidative damage in systemic sclerosis. J Rheumatol 37:2540–2547

    Article  PubMed  CAS  Google Scholar 

  16. Tikly M, Marshall SE, Haldar NA, Gulumian M, Wordsworth P, Welsh KI (2004) Oxygen free radical scavenger enzyme polymorphisms in systemic sclerosis. Free Radic Biol Med 36: 1403–1407

    Article  PubMed  CAS  Google Scholar 

  17. Iwata Y, Yoshizaki A, Ogawa F et al (2009) Increased serum pentraxin 3 in patients with systemic sclerosis. J Rheumatol 36:976–983

    Article  PubMed  CAS  Google Scholar 

  18. Morrow JD (2000) The isoprostanes: their quantification as an index of oxidant stress status in vivo. Drug Metab Rev 32:377–385

    Article  PubMed  CAS  Google Scholar 

  19. Stein CM, Tanner SB, Awad JA, Roberts LJ 2nd, Morrow JD (1996) Evidence of free radical-mediated injury (isoprostane overproduction) in scleroderma. Arthritis Rheum 39:1146–1150

    Article  PubMed  CAS  Google Scholar 

  20. Wood LG, Garg ML, Simpson JL et al (2005) Induced sputum 8-isoprostane concentrations in inflammatory airway diseases. Am J Respir Crit Care Med 171:426–430

    Article  PubMed  Google Scholar 

  21. Montuschi P, Ciabattoni G, Paredi P et al (1998) 8-isoprostane as a biomarker of oxidative stress in interstitial lung diseases. Am J Respir Crit Care Med 158:1524–1527

    Article  PubMed  CAS  Google Scholar 

  22. Shimizu K, Ogawa F, Akiyama Y et al (2008) Increased serum levels of N(epsilon)-(hexanoyl)lysine, a new marker of oxidative stress, in systemic sclerosis. J Rheumatol 35:2214–2219

    Article  PubMed  CAS  Google Scholar 

  23. Ogawa F, Shimizu K, Hara T et al (2008) Serum levels of heat shock protein 70, a biomarker of cellular stress, are elevated in patients with systemic sclerosis: association with fibrosis and vascular damage. Clin Exp Rheumatol 26:659–662

    PubMed  CAS  Google Scholar 

  24. Emerit I, Filipe P, Meunier P et al (1997) Clastogenic activity in the plasma of scleroderma patients: a biomarker of oxidative stress. Dermatology 194:140–146

    Article  PubMed  CAS  Google Scholar 

  25. Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29:345–350

    Article  PubMed  CAS  Google Scholar 

  26. Sorescu D, Weiss D, Lassegue B et al (2002) Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 105:1429–1435

    Article  PubMed  CAS  Google Scholar 

  27. Brandes RP, Weissmann N, Schroder K (2010) NADPH oxidases in cardiovascular disease. Free Radic Biol Med 49:687–706

    Article  PubMed  CAS  Google Scholar 

  28. Lassègue B, Griendling KK (2010) NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 30:653–661

    Article  PubMed  Google Scholar 

  29. Griffith B, Pendyala S, Hecker L, Lee PJ, Natarajan V, Thannickal VJ (2009) NOX enzymes and pulmonary disease. Antioxid Redox Signal 11:2505–2516

    Article  PubMed  CAS  Google Scholar 

  30. Geiszt M, Kopp JB, Várnai P, Leto TL (2000) Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA 97:8010–8014

    Article  PubMed  CAS  Google Scholar 

  31. Sorce S, Krause KH (2009) NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal 11:2481–2504

    Article  PubMed  CAS  Google Scholar 

  32. Solans R, Motta C, Sola R et al (2000) Abnormalities of erythrocyte membrane fluidity, lipid composition, and lipid peroxidation in systemic sclerosis: evidence of free radical-mediated injury. Arthritis Rheum 43:894–900

    Article  PubMed  CAS  Google Scholar 

  33. Servettaz A, Goulvestre C, Kavian N et al (2009) Selective oxidation of DNA topoisomerase 1 induces systemic sclerosis in the mouse. J Immunol 182:5855–5864

    Article  PubMed  CAS  Google Scholar 

  34. Tsou PS, Talia NN, Pinney AJ et al (2012) Effect of oxidative stress on protein tyrosine phosphatase-1B in scleroderma dermal fibroblasts. Arthritis Rheum 64(6):1978–1989

    Article  PubMed  CAS  Google Scholar 

  35. Kawahara T, Quinn MT, Lambeth JD (2007) Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol Biol 7:109

    Article  PubMed  Google Scholar 

  36. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  PubMed  CAS  Google Scholar 

  37. Sumimoto H (2008) Structure, regulation and evolution of nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275:3249–3277

    Article  PubMed  CAS  Google Scholar 

  38. Cucoranu I, Clempus R, Dikalova A et al (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97:900–907

    Article  PubMed  CAS  Google Scholar 

  39. Hecker L, Vittal R, Jones T et al (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15:1077–1081

    Article  PubMed  CAS  Google Scholar 

  40. Waghray M, Cui Z, Horowitz JC et al (2005) Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. FASEB J 19:854–856

    PubMed  CAS  Google Scholar 

  41. Roberts AB, Sporn MB, Assoian RK et al (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171

    Article  PubMed  CAS  Google Scholar 

  42. Trojanowska M (2008) Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology (Oxford) 47(Suppl 5):v2–v4

    Article  CAS  Google Scholar 

  43. Lassegue B, Sorescu D, Szocs K et al (2001) Novel gp91(phox) homologues in vascular smooth muscle cells: Nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 88:888–894

    Article  PubMed  CAS  Google Scholar 

  44. Datla SR, Peshavariya H, Dusting GJ, Mahadev K, Goldstein BJ, Jiang F (2007) Important role of Nox4 type NADPH oxidase in angiogenic responses in human microvascular endothelial cells in vitro. Arterioscler Thromb Vasc Biol 27:2319–2324

    Article  PubMed  CAS  Google Scholar 

  45. An SJ, Boyd R, Zhu M, Chapman A, Pimentel DR, Wang HD (2007) NADPH oxidase mediates angiotensin II-induced endothelin-1 expression in vascular adventitial fibroblasts. Cardiovasc Res 75:702–709

    Article  PubMed  CAS  Google Scholar 

  46. Kawaguchi Y, Takagi K, Hara M et al (2004) Angiotensin II in the lesional skin of systemic sclerosis patients contributes to tissue fibrosis via angiotensin II type 1 receptors. Arthritis Rheum 50:216–226

    Article  PubMed  CAS  Google Scholar 

  47. Duerrschmidt N, Wippich N, Goettsch W, Broemme HJ, Morawietz H (2000) Endothelin-1 induces NAD(P)H oxidase in human endothelial cells. Biochem Biophys Res Commun 269:713–717

    Article  PubMed  CAS  Google Scholar 

  48. Svegliati S, Olivieri A, Campelli N et al (2007) Stimulatory autoantibodies to PDGF receptor in patients with extensive chronic graft-versus-host disease. Blood 110:237–241

    Article  PubMed  CAS  Google Scholar 

  49. Baroni SS, Santillo M, Bevilacqua F et al (2006) Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N Engl J Med 354:2667–2676

    Article  PubMed  CAS  Google Scholar 

  50. Svegliati S, Cancello R, Sambo P et al (2005) Platelet-derived growth factor and reactive oxygen species (ROS) regulate ras protein levels in primary human fibroblasts via ERK1/2. Amplification of ROS and Ras in systemic sclerosis fibroblasts. J Biol Chem 280:36474–36482

    Article  PubMed  CAS  Google Scholar 

  51. Wu M, Varga J (2008) In perspective: murine models of scleroderma. Curr Rheumatol Rep 10:173–182

    Article  PubMed  CAS  Google Scholar 

  52. Beyer C, Schett G, Distler O, Distler JH (2010) Animal models of systemic sclerosis: prospects and limitations. Arthritis Rheum 62:2831–2844

    Article  PubMed  CAS  Google Scholar 

  53. Rogai V, Lories RJ, Guiducci S, Luyten FP, Matucci Cerinic M (2008) Animal models in systemic sclerosis. Clin Exp Rheumatol 26:941–946

    PubMed  CAS  Google Scholar 

  54. Van de Water J, Jimenez SA, Gershwin ME (1995) Animal models of scleroderma: contrasts and comparisons. Int Rev Immunol 12:201–216

    Article  PubMed  Google Scholar 

  55. Jimenez SA, Christner PJ (2002) Murine animal models of systemic sclerosis. Curr Opin Rheumatol 14:671–680

    Article  PubMed  CAS  Google Scholar 

  56. Yamamoto T, Takagawa S, Katayama I et al (1999) Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma. J Invest Dermatol 112: 456–462

    Article  PubMed  CAS  Google Scholar 

  57. Matsushita M, Yamamoto T, Nishioka K (2005) Plasminogen activator inhibitor-1 is elevated, but not essential, in the development of bleomycin-induced murine scleroderma. Clin Exp Immunol 139:429–438

    Article  PubMed  CAS  Google Scholar 

  58. Kajii M, Suzuki C, Kashihara J et al (2011) Prevention of excessive collagen accumulation by human intravenous immunoglobulin treatment in a murine model of bleomycin-induced scleroderma. Clin Exp Immunol 163:235–241

    Article  PubMed  CAS  Google Scholar 

  59. Nakamura-Wakatsuki T, Oyama N, Yamamoto T (2012) Local injection of latency-associated peptide, a linker propeptide specific for active form of transforming growth factor-beta1, inhibits dermal sclerosis in bleomycin-induced murine scleroderma. Exp Dermatol 21:189–194

    Article  PubMed  CAS  Google Scholar 

  60. Yamamoto T, Eckes B, Krieg T (2000) Bleomycin increases steady-state levels of type I collagen, fibronectin and decorin mRNAs in human skin fibroblasts. Arch Dermatol Res 292: 556–561

    Article  PubMed  CAS  Google Scholar 

  61. Nagai M, Hasegawa M, Takehara K, Sato S (2004) Novel autoantibody to Cu/Zn superoxide dismutase in patients with localized scleroderma. J Invest Dermatol 122:594–601

    Article  PubMed  CAS  Google Scholar 

  62. Arcucci A, Ruocco MR, Amatruda N et al (2011) Analysis of extracellular superoxide dismutase in fibroblasts from patients with systemic sclerosis. J Biol Regul Homeost Agents 25: 647–654

    PubMed  CAS  Google Scholar 

  63. Simonini G, Pignone A, Generini S, Falcini F, Cerinic MM (2000) Emerging potentials for an antioxidant therapy as a new approach to the treatment of systemic sclerosis. Toxicology 155:1–15

    Article  PubMed  CAS  Google Scholar 

  64. Yoshizaki A, Yanaba K, Ogawa A et al (2011) The specific free radical scavenger edaravone suppresses fibrosis in the bleomycin-induced and tight skin mouse models of systemic sclerosis. Arthritis Rheum 63:3086–3097

    Article  PubMed  CAS  Google Scholar 

  65. Marut WK, Kavian N, Servettaz A et al (2012) The organotelluride catalyst (PHTE)NQ prevents HOCl-induced systemic sclerosis in mouse. J Invest Dermatol 132:1125–1132

    Article  PubMed  CAS  Google Scholar 

  66. Kokot A, Sindrilaru A, Schiller M et al (2009) Alpha-melanocyte-stimulating hormone suppresses bleomycin-induced collagen synthesis and reduces tissue fibrosis in a mouse model of scleroderma: melanocortin peptides as a novel treatment strategy for scleroderma? Arthritis Rheum 60:592–603

    Article  PubMed  CAS  Google Scholar 

  67. Cracowski JL, Girolet S, Imbert B et al (2005) Effects of short-term treatment with vitamin E in systemic sclerosis: a double blind, randomized, controlled clinical trial of efficacy based on urinary isoprostane measurement. Free Radic Biol Med 38:98–103

    Article  PubMed  CAS  Google Scholar 

  68. Allanore Y, Borderie D, Lemarechal H, Ekindjian OG, Kahan A (2004) Acute and sustained effects of dihydropyridine-type calcium channel antagonists on oxidative stress in systemic sclerosis. Am J Med 116:595–600

    Article  PubMed  CAS  Google Scholar 

  69. Furst DE, Clements PJ, Harris R, Ross M, Levy J, Paulus HE (1979) Measurement of clinical change in progressive systemic sclerosis: a 1 year double-blind placebo-controlled trial of N-acetylcysteine. Ann Rheum Dis 38:356–361

    Article  PubMed  CAS  Google Scholar 

  70. Sambo P, Amico D, Giacomelli R et al (2001) Intravenous N-acetylcysteine for treatment of Raynaud’s phenomenon secondary to systemic sclerosis: a pilot study. J Rheumatol 28:2257–2262

    PubMed  CAS  Google Scholar 

  71. Salsano F, Letizia C, Proietti M et al (2005) Significant changes of peripheral perfusion and plasma adrenomedullin levels in N-acetylcysteine long term treatment of patients with sclerodermic Raynaud’s phenomenon. Int J Immunopathol Pharmacol 18:761–770

    PubMed  CAS  Google Scholar 

  72. Rosato E, Zardi EM, Barbano B et al (2009) N-acetylcysteine infusion improves hepatic perfusion in the early stages of systemic sclerosis. Int J Immunopathol Pharmacol 22:763–772

    PubMed  CAS  Google Scholar 

  73. Rosato E, Cianci R, Barbano B et al (2009) N-acetylcysteine infusion reduces the resistance index of renal artery in the early stage of systemic sclerosis. Acta Pharmacol Sin 30:1283–1288

    Article  PubMed  CAS  Google Scholar 

  74. Rosato E, Rossi C, Molinaro I, Giovannetti A, Pisarri S, Salsano F (2011) Long-term N-acetylcysteine therapy in systemic sclerosis interstitial lung disease: a retrospective study. Int J Immunopathol Pharmacol 24:727–733

    PubMed  CAS  Google Scholar 

  75. Dooley A, Shi-Wen X, Aden N et al (2010) Modulation of collagen type I, fibronectin and dermal fibroblast function and activity, in systemic sclerosis by the antioxidant epigallocatechin-3-gallate. Rheumatology (Oxford) 49:2024–2036

    Article  CAS  Google Scholar 

  76. Cao YL, Li X, Zheng M (2010) Capparis spinosa protects against oxidative stress in systemic sclerosis dermal fibroblasts. Arch Dermatol Res 302:349–355

    Article  PubMed  Google Scholar 

  77. Erre GL, De Muro P, Dellaca P et al (2008) Iloprost therapy acutely decreases oxidative stress in patients affected by systemic sclerosis. Clin Exp Rheumatol 26:1095–1098

    PubMed  CAS  Google Scholar 

  78. Erre GL, Passiu G (2009) Antioxidant effect of iloprost: current knowledge and therapeutic implications for systemic sclerosis. Reumatismo 61:90–97

    PubMed  CAS  Google Scholar 

  79. Volpe A, Biasi D, Caramaschi P et al (2008) Iloprost infusion does not reduce oxidative stress in systemic sclerosis. Rheumatol Int 28:335–337

    Article  PubMed  CAS  Google Scholar 

  80. Kalin R, Righi A, Del Rosso A et al (2002) Activin, a grape seed-derived proanthocyanidin extract, reduces plasma levels of oxidative stress and adhesion molecules (ICAM-1, VCAM-1 and E-selectin) in systemic sclerosis. Free Radic Res 36:819–825

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Supported by NIH grant 5 R01 AR019616-29 to SAJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonsoles Piera-Velazquez Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Piera-Velazquez, S., Jimenez, S.A. (2013). Role of Oxidative Stress and Reactive Oxygen Radicals in the Pathogenesis of Systemic Sclerosis. In: Alcaraz, M., Gualillo, O., Sánchez-Pernaute, O. (eds) Studies on Arthritis and Joint Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-6166-1_10

Download citation

Publish with us

Policies and ethics