Skip to main content

Advertisement

Log in

In perspective: Murine models of scleroderma

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

An understanding of the complex pathogenesis of systemic sclerosis (SSc) has been slow to emerge, due in large part to the lack of an animal model recapitulating the three cardinal attributes of SSc: autoimmunity, vasculopathy, and fibrosis. Experimental manipulations in inbred murine strains can lead to conditions that mimic SSc fibrosis. Furthermore, genetic engineering has enabled the creation of novel murine strains that spontaneously develop fibrosis or are protected from fibrosis development. Studies of these mice shed light on the cell types, cell interactions, molecules, and pathways that contribute to SSc manifestations. High-throughput discovery technologies such as DNA microarrays in animal models can identify novel genes and regulatory networks that are important for disease manifestations and that may be targets for therapy. In this brief review, we highlight recent progress in the field and attempt to place the strengths and limitations of popular SSc murine models in perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Chua F, Gauldie J, Laurent GJ: Pulmonary fibrosis: searching for model answers. Am J Respir Cell Mol Biol 2005, 33:9–13.

    Article  PubMed  CAS  Google Scholar 

  2. Moore BB, Hogaboam CM: Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2008, 294:L152–L160.

    Article  PubMed  CAS  Google Scholar 

  3. Gauldie J, Kolb M: Animal models of pulmonary fibrosis: how far from effective reality? Am J Physiol Lung Cell Mol Physiol 2008, 294:L151.

    Article  PubMed  CAS  Google Scholar 

  4. Moeller A, Ask K, Warburton D, et al.: The bleomycin animal model: A useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol 2008, 40:362–382.

    Article  PubMed  CAS  Google Scholar 

  5. Yamamoto T, Takagawa S, Katayama I, et al.: Animal model of sclerotic skin. I: Local injections of Bleomycin induced sclerotic skin mimicking scleroderma. J Invest Dermatol 1999, 112:456–462.

    Article  PubMed  CAS  Google Scholar 

  6. Takagawa S, Lakos G, Mori Y, et al.: Sustained activation of fibroblast transforming growth factor-beta/Smad signaling in a murine model of scleroderma. J Invest Dermatol 2003, 121:41–50.

    Article  PubMed  CAS  Google Scholar 

  7. Mori Y, Hinchcliff M, Wu M, et al.: Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-beta responsiveness. Exp Cell Res 2008, 314:1094–1104.

    Article  PubMed  CAS  Google Scholar 

  8. Lakos G, Takagawa S, Chen SJ, et al.: Targeted disruption of TGF-beta/Smad3 signaling modulates skin fi brosis in a mouse model of scleroderma. Am J Pathol 2004, 165:203–217.

    PubMed  CAS  Google Scholar 

  9. Hayashida T, Wu MH, Pierce A, et al.: MAP-kinase activity necessary for TGFbeta1-stimulated mesangial cell type I collagen expression requires adhesion-dependent phosphorylation of FAK tyrosine 397. J Cell Sci 2007, 120(Pt 23):4230–4240.

    Article  PubMed  CAS  Google Scholar 

  10. Chen SJ, Ning H, Ishida W, et al.: The early-immediate gene EGR-1 is induced by transforming growth factor-beta and mediates stimulation of collagen gene expression. J Biol Chem 2006, 281:21183–21197.

    Article  PubMed  CAS  Google Scholar 

  11. Bhattacharyya S, Ghosh AK, Pannu J, et al.: Fibroblast expression of the coactivator p300 governs the intensity of profibrotic response to transforming growth factor beta. Arthritis Rheum 2005, 52:1248–1258.

    Article  PubMed  CAS  Google Scholar 

  12. Hasegawa M, Sato S, Takehara K: Augmented production of chemokines (monocyte chemotactic protein-1 (MCP-1), macrophage infl ammatory protein-1alpha (MIP-1alpha) and MIP-1beta) in patients with systemic sclerosis: MCP-1 and MIP-1alpha may be involved in the development of pulmonary fi brosis. Clin Exp Immunol 1999, 117:159–165.

    Article  PubMed  CAS  Google Scholar 

  13. Ferreira AM, Takagawa S, Fresco R, et al.: Diminished induction of skin fi brosis in mice with MCP-1 defi ciency. J Invest Dermatol 2006, 126:1900–1908.

    Article  PubMed  CAS  Google Scholar 

  14. Yamamoto T, Nishioka K: Role of monocyte chemoattractant protein-1 and its receptor, CCR-2, in the pathogenesis of bleomycin-induced scleroderma. J Invest Dermatol 2003, 121:510–516.

    Article  PubMed  CAS  Google Scholar 

  15. Lakos G, Melichian D, Wu M, Varga J: Increased bleomycin-induced skin fi brosis in mice lacking the Th1-specifi c transcription factor T-bet. Pathobiology 2006, 73:224–237.

    Article  PubMed  CAS  Google Scholar 

  16. Aliprantis AO, Wang J, Fathman JW, et al.: Transcription factor T-bet regulates skin sclerosis through its function in innate immunity and via IL-13. Proc Natl Acad Sci U S A 2007, 104:2827–2830.

    Article  PubMed  CAS  Google Scholar 

  17. Chan ES, Fernandez P, Merchant AA, et al.: Adenosine A2A receptors in diffuse dermal fi brosis: pathogenic role in human dermal fi broblasts and in a murine model of scleroderma. Arthritis Rheum 2006, 54:2632–2642.

    Article  PubMed  CAS  Google Scholar 

  18. Ma B, Blackburn MR, Lee CG, et al.: Adenosine metabolism and murine strain-specifi c IL-4-induced infl ammation, emphysema, and fi brosis. J Clin Invest 2006, 116:1274–1283.

    Article  PubMed  CAS  Google Scholar 

  19. Selman M, Carrillo G, Estrada A, et al.: Accelerated variant of idiopathic pulmonary fi brosis: clinical behavior and gene expression pattern. PLoS ONE 2007, 2:e482.

    Article  PubMed  Google Scholar 

  20. Jinnin M, Ihn H, Mimura Y, et al.: Effects of hepatocyte growth factor on the expression of type I collagen and matrix metalloproteinase-1 in normal and scleroderma dermal fi broblasts. J Invest Dermatol 2005, 124:324–330.

    Article  PubMed  CAS  Google Scholar 

  21. Wu MH, Yokozeki H, Takagawa S, et al.: Hepatocyte growth factor both prevents and ameliorates the symptoms of dermal sclerosis in a mouse model of scleroderma. Gene Ther 2004, 11:170–180.

    Article  PubMed  CAS  Google Scholar 

  22. Iwasaki T, Imado T, Kitano S, Sano H: Hepatocyte growth factor ameliorates dermal sclerosis in the tight-skin mouse model of scleroderma. Arthritis Res Ther 2006, 8:R161.

    Article  PubMed  Google Scholar 

  23. Bogatkevich GS, Ludwicka-Bradley A, Highland KB, et al.: Impairment of the antifi brotic effect of hepatocyte growth factor in lung fi broblasts from African Americans: possible role in systemic sclerosis. Arthritis Rheum 2007, 56:2432–2442.

    Article  PubMed  CAS  Google Scholar 

  24. Bogatkevich GS, Ludwicka-Bradley A, Highland KB, et al.: Down-regulation of collagen and connective tissue growth factor expression with hepatocyte growth factor in lung fi broblasts from white scleroderma patients via two signaling pathways. Arthritis Rheum 2007, 56:3468–3477.

    Article  PubMed  CAS  Google Scholar 

  25. Ghosh AK, Bhattacharyya S, Lakos G, et al.: Disruption of transforming growth factor beta signaling and profi brotic responses in normal skin fi broblasts by peroxisome proliferator-activated receptor gamma. Arthritis Rheum 2004, 50:1305–1318.

    Article  PubMed  CAS  Google Scholar 

  26. Lakatos HF, Thatcher TH, Kottmann RM, et al.: The role of PPARs in lung fi brosis. PPAR Res 2007, 2007:71323.

    PubMed  Google Scholar 

  27. Kohno S, Endo H, Hashimoto A, et al.: Inhibition of skin sclerosis by 15deoxy delta12,14-prostaglandin J2 and retro virally transfected prostaglandin D synthase in a mouse model of bleomycin-induced scleroderma. Biomed Pharmacother 2006, 60:18–25.

    Article  PubMed  CAS  Google Scholar 

  28. Milam JE, Keshamouni VG, Phan SH, et al.: PPAR-{gamma} agonists inhibit pro-fi brotic phenotypes in human lung fi broblasts and bleomycin-induced pulmonary fi brosis. Am J Physiol Lung Cell Mol Physiol 2007 (Epub ahead of print).

  29. Postlethwaite AE, Shigemitsu H, Kanangat S: Cellular origins of fi broblasts: possible implications for organ fi brosis in systemic sclerosis. Curr Opin Rheumatol 2004, 16:733–738.

    Article  PubMed  Google Scholar 

  30. Badiavas EV, Abedi M, Butmarc J, et al.: Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 2003, 196:245–250.

    Article  PubMed  CAS  Google Scholar 

  31. Mori L, Bellini A, Stacey MA, et al.: Fibrocytes contribute to the myofi broblast population in wounded skin and originate from the bone marrow. Exp Cell Res 2005, 304:81–90.

    Article  PubMed  CAS  Google Scholar 

  32. Hashimoto N, Jin H, Liu T, et al.: Bone marrow-derived progenitor cells in pulmonary fi brosis. J Clin Invest 2004, 113:243–252.

    PubMed  CAS  Google Scholar 

  33. Ishii G, Sangai T, Sugiyama K, et al.: In vivo characterization of bone marrow-derived fi broblasts recruited into fi brotic lesions. Stem Cells 2005, 23:699–706.

    Article  PubMed  CAS  Google Scholar 

  34. Boban I, Barisic-Dujmovic T, Clark SH: Parabiosis and transplantation models show no evidence of circulating dermal fi broblast progenitors in bleomycin-induced skin fi brosis. J Cell Physiol 2008, 214:230–237.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Y, McCormick LL, Gilliam AC: Latency-associated peptide prevents skin fi brosis in murine sclerodermatous graft-versus-host disease, a model for human scleroderma. J Invest Dermatol 2003, 121:713–719.

    Article  PubMed  CAS  Google Scholar 

  36. Ruzek MC, Jha S, Ledbetter S, et al.: A modified model of graft-versus-host-induced systemic sclerosis (scleroderma) exhibits all major aspects of the human disease. Arthritis Rheum 2004, 50:1319–1331.

    Article  PubMed  Google Scholar 

  37. Zhou L, Askew D, Wu C, Gilliam AC: Cutaneous gene expression by DNA microarray in murine sclerodermatous graft-versus-host disease, a model for human scleroderma. J Invest Dermatol 2007, 127:281–292.

    Article  PubMed  CAS  Google Scholar 

  38. Askew D, Zhou L, Wu C, et al.: Absence of cutaneous TNF alpha-producing CD4+ T cells and TNFalpha may allow for fi brosis rather than epithelial cytotoxicity in murine sclerodermatous graft-versus-host disease, a model for human scleroderma. J Invest Dermatol 2007, 127:1905–1914.

    Article  PubMed  CAS  Google Scholar 

  39. Murota H, Hamasaki Y, Nakashima T, et al.: Disruption of tumor necrosis factor receptor p55 impairs collagen turnover in experimentally induced sclerodermic skin fibroblasts. Arthritis Rheum 2003, 48:1117–1125.

    Article  PubMed  CAS  Google Scholar 

  40. Jimenez SA, Millan A, Bashey RI: Scleroderma like alterations in collagen metabolism occurring in the TSK/+ (tight skin) mouse. Arthritis Rheum 1984, 27:180–185.

    Article  PubMed  CAS  Google Scholar 

  41. Baxter RM, Crowell TP, McCrann ME, et al.: Analysis of the tight skin (Tsk1/+) mouse as a model for testing antifi brotic agents. Lab Invest 2005, 85:1199–1209.

    Article  PubMed  CAS  Google Scholar 

  42. Whitfield ML, Finlay DR, Murray JI, et al.: Systemic and cell type-specifi c gene expression patterns in scleroderma skin. Proc Natl Acad Sci U S A 2003, 100:12319–12324.

    Article  PubMed  CAS  Google Scholar 

  43. Bayle J, Fitch J, Jacobsen K, et al.: Increased expression of Wnt2 and SFRP4 in Tsk mouse skin: role of Wnt signaling in altered dermal fi brillin deposition and systemic sclerosis. J Invest Dermatol 2008, 128:871–881.

    Article  PubMed  CAS  Google Scholar 

  44. Siracusa LD, McGrath R, Ma Q, et al.: A tandem duplication within the fi brillin 1 gene is associated with the mouse tight skin mutation. Genome Res 1996, 6:300–313.

    Article  PubMed  CAS  Google Scholar 

  45. Ramirez F, Dietz HC: Fibrillin-rich microfi brils: Structural determinants of morphogenetic and homeostatic events. J Cell Physiol 2007, 213:326–330.

    Article  PubMed  CAS  Google Scholar 

  46. Barisic-Dujmovic T, Boban I, Adams DJ, Clark SH: Marfanlike skeletal phenotype in the tight skin (Tsk) mouse. Calcif Tissue Int 2007, 81:305–315.

    Article  PubMed  CAS  Google Scholar 

  47. Habashi JP, Judge DP, Holm TM, et al.: Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 2006, 312:117–121.

    Article  PubMed  CAS  Google Scholar 

  48. Neptune ER, Frischmeyer PA, Arking DE, et al.: Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 2003, 33:407–411.

    Article  PubMed  CAS  Google Scholar 

  49. Christner PJ, Peters J, Hawkins D, et al.: The tight skin 2 mouse. An animal model of scleroderma displaying cutaneous fi brosis and mononuclear cell infi ltration. Arthritis Rheum 1995, 38:1791–1798.

    Article  PubMed  CAS  Google Scholar 

  50. Gentiletti J, McCloskey LJ, Artlett CM, et al.: Demonstration of autoimmunity in the tight skin-2 mouse: a model for scleroderma. J Immunol 2005, 175:2418–2426.

    PubMed  CAS  Google Scholar 

  51. Barisic-Dujmovic T, Boban I, Clark SH: Regulation of collagen gene expression in the Tsk2 mouse. J Cell Physiol 2008, 215:464–471.

    Article  PubMed  CAS  Google Scholar 

  52. Sonnylal S, Denton CP, Zheng B, et al.: Postnatal induction of transforming growth factor beta signaling in fi broblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma. Arthritis Rheum 2007, 56:334–344.

    Article  PubMed  CAS  Google Scholar 

  53. Denton CP, Zheng B, Evans LA, et al.: Fibroblast-specifi c expression of a kinase-defi cient type II transforming growth factor beta (TGF-beta) receptor leads to paradoxical activation of TGF-beta signaling pathways with fi brosis in transgenic mice. J Biol Chem 2003, 278:25109–25119.

    Article  PubMed  CAS  Google Scholar 

  54. Unemori EN, Bauer EA, Amento EP: Relaxin alone and in conjunction with interferon-gamma decreases collagen synthesis by cultured human scleroderma fi broblasts. J Invest Dermatol 1992, 99:337–342.

    Article  PubMed  CAS  Google Scholar 

  55. Samuel CS, Zhao C, Yang Q, et al.: The relaxin gene knockout mouse: a model of progressive scleroderma. J Invest Dermatol 2005, 125:692–699.

    Article  PubMed  CAS  Google Scholar 

  56. Samuel CS, Zhao C, Bathgate RA, et al.: Relaxin defi ciency in mice is associated with an age-related progression of pulmonary fi brosis. FASEB J 2003, 17:121–123.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Varga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M., Varga, J. In perspective: Murine models of scleroderma. Curr Rheumatol Rep 10, 173–182 (2008). https://doi.org/10.1007/s11926-008-0030-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-008-0030-9

Keywords

Navigation