Skip to main content

Biosensors and Bioassays for Ecological Risk Monitoring and Assessment

  • Chapter
  • First Online:
Environmental Toxicology

Abstract

This article describes the development and use of portable recognition element (RE)-based assays for environmental biosensing. It will focus on using portable optical biosensors; specifically surface plasmon resonance (SPR)-based biosensors for detecting a wide variety of analytes that may pose environmental risks. Portable SPR-based biosensor systems are suitable for real-time environmental monitoring as well as for many other applications including biodefense, medical diagnostic applications, food safety, and general laboratory research.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Analyte:

The molecule or microorganism that is the detection target in an analytical procedure.

Recognition element:

A protein or other biomolecule that can bind to an analyte with specificity and affinity.

ELISA:

Enzyme Linked Immunosorbent Assay. An assay using an antibody immobilized on a solid phase, (usually microtiter plate) to capture analyte and a second antibody coupled to an amplifier to detect the specific analyte.

Lateral flow assay:

An immunoassay in which a liquid sample is added to a dry porous carrier and wicked by capillary action to a recognition element immobilized on a specific area of the support material. A colored nanoparticle is used to detect the presence of analyte.

Nanoparticle:

A particle with dimensions between 1 and 100 nm.

Hapten:

A small molecular weight molecule (usually <1,000 Da) that cannot elicit an immune response by itself and must be attached to a larger carrier molecule prior to injection into the host animal.

Paramagnetic:

Magnetism induced in the presence of an externally applied magnetic field.

Bibliography

  1. Ngom B et al (2010) Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal Bioanal Chem 397(3):1113–1135

    Article  PubMed  CAS  Google Scholar 

  2. Lequin RM (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51(12):2415–2418

    Article  PubMed  CAS  Google Scholar 

  3. Melendez J et al (1996) A commercial solution for surface plasmon sensing. Sens Actuators, B 35(1–3):212–216

    Article  Google Scholar 

  4. Melendez J et al (1997) Development of a surface plasmon resonance sensor for commercial applications. Sens Actuators, B 39(1–3):375–379

    Article  Google Scholar 

  5. Elkind JL et al (1999) Integrated analytical sensors: the use of the TISPR-1 as a biosensor. Sens Actuators, B 54(1–2):182–190

    Article  Google Scholar 

  6. Naimushin AN et al (2003) A portable surface plasmon resonance (SPR) sensor system with temperature regulation. Sens Actuators, B 96(1–2):253–260

    Article  Google Scholar 

  7. Chinowsky TM et al (2007) Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection. Biosens Bioelectron 22(9–10):2268–2275

    Article  PubMed  CAS  Google Scholar 

  8. Soelberg SD et al (2009) Surface plasmon resonance detection using antibody-linked magnetic nanoparticles for analyte capture, purification, concentration, and signal amplification. Anal Chem 81(6):2357–2363

    Article  PubMed  CAS  Google Scholar 

  9. Kretschm E (1971) Determination of optical constants of metals by excitation of surface plasmons. Z Phys 241(4):313

    Article  Google Scholar 

  10. Davies J (1996) Surface analytical techniques for probing biomaterial processes, CRC series in chemistry and physics of surfaces and interfaces. CRC Press, Boca Raton, p 178

    Google Scholar 

  11. Homola J (2006) Surface plasmon resonance based sensors, Springer series on chemical sensors and biosensors. Springer, Berlin, p xii, 251

    Google Scholar 

  12. Schasfoort RBM, Tudos AJ (2008) Handbook of surface plasmon resonance. RSC Pub, Cambridge

    Book  Google Scholar 

  13. Love JC et al (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105(4):1103–1169

    Article  PubMed  CAS  Google Scholar 

  14. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    Article  PubMed  CAS  Google Scholar 

  15. Mrksich M, Whitesides GM (1996) Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu Rev Biophys Biomol Struct 25:55–78

    Article  PubMed  CAS  Google Scholar 

  16. Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8(6):1775–1789

    Article  PubMed  CAS  Google Scholar 

  17. Staros JV, Wright RW, Swingle DM (1986) Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal Biochem 156(1):220–222

    Article  PubMed  CAS  Google Scholar 

  18. Bain CD, Evall J, Whitesides GM (1989) Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent. J Am Chem Soc 111(18):7155–7164

    Article  CAS  Google Scholar 

  19. Lofas S, Johnsson B (1990) A novel hydrogel matrix on gold surfaces in surface-plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J Chem Soc Chem Commun 21:1526–1528

    Article  Google Scholar 

  20. Leidberg BaL (1993) Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sens Actuators, B 11:62–73

    Google Scholar 

  21. Brown S (1997) Metal-recognition by repeating polypeptides. Nat Biotechnol 15(3):269–272

    Article  PubMed  CAS  Google Scholar 

  22. Woodbury RG et al (1998) Construction of biosensors using a gold-binding polypeptide and a miniature integrated surface plasmon resonance sensor. Biosens Bioelectron 13(10):1117–1126

    Article  PubMed  CAS  Google Scholar 

  23. Joung HA et al (2008) High sensitivity detection of 16s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor. Anal Chim Acta 630(2):168–173

    Article  PubMed  CAS  Google Scholar 

  24. Mohrle BP, Kumpf M, Gauglitz GN (2005) Determination of affinity constants of locked nucleic acid (LNA) and DNA duplex formation using label free sensor technology. Analyst 130(12):1634–1638

    Article  PubMed  Google Scholar 

  25. Yang N et al (2007) Evaluation of two- and three-dimensional streptavidin binding platforms for surface plasmon resonance spectroscopy studies of DNA hybridization and protein-DNA binding. Biosens Bioelectron 22(11):2700–2706

    Article  PubMed  CAS  Google Scholar 

  26. Jung Y et al (2007) Self-directed and self-oriented immobilization of antibody by protein G-DNA conjugate. Anal Chem 79(17):6534–6541

    Article  PubMed  CAS  Google Scholar 

  27. Bae YM et al (2005) Study on orientation of immunoglobulin G on protein G layer. Biosens Bioelectron 21(1):103–110

    Article  PubMed  CAS  Google Scholar 

  28. Stevens RC et al (2007) Detection of the toxin domoic acid from clam extracts using a portable surface plasmon resonance biosensor. Harmful Algae 6(2):166–174

    Article  CAS  Google Scholar 

  29. Stevens RC et al (2008) Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system. Anal Chem 80(17):6747–6751

    Article  PubMed  CAS  Google Scholar 

  30. Huber D et al (2009) Effectiveness of natural and synthetic blocking reagents and their application for detecting food allergens in enzyme-linked immunosorbent assays. Anal Bioanal Chem 394(2):539–548

    Article  PubMed  CAS  Google Scholar 

  31. Dee S et al (2009) Evidence of long distance airborne transport of porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae. Vet Res 40(4):39

    Article  PubMed  Google Scholar 

  32. Bishop EJ, Mitra S (2007) Measurement of nitrophenols in air samples by impinger sampling and supported liquid membrane micro-extraction. Anal Chim Acta 583(1):10–14

    Article  PubMed  CAS  Google Scholar 

  33. Rosen DL (2006) Airborne bacterial endospores detected by use of an impinger containing aqueous terbium chloride. Appl Opt 45(13):3152–3157

    Article  PubMed  CAS  Google Scholar 

  34. Fabian P et al (2009) Airborne influenza virus detection with four aerosol samplers using molecular and infectivity assays: considerations for a new infectious virus aerosol sampler. Indoor Air 19(5):433–441

    Article  PubMed  CAS  Google Scholar 

  35. Burton NC et al (2005) The effect of filter material on bioaerosol collection of Bacillus subtilis spores used as a Bacillus anthracis simulant. J Environ Monit 7(5):475–480

    Article  Google Scholar 

  36. Plutzer J, Torokne A, Karanis P (2010) Combination of ARAD microfibre filtration and LAMP methodology for simple, rapid and cost-effective detection of human pathogenic Giardia duodenalis and Cryptosporidium spp. in drinking water. Lett Appl Microbiol 50(1):82–88

    Article  PubMed  CAS  Google Scholar 

  37. Breier JA et al (2009) A suspended-particle rosette multi-sampler for discrete biogeochemical sampling in low-particle-density waters. Deep Sea Res I 56(9):1579–1589

    Article  CAS  Google Scholar 

  38. Edmonds JM et al (2009) Surface sampling of spores in dry-deposition aerosols. Appl Environ Microbiol 75(1):39–44

    Article  PubMed  CAS  Google Scholar 

  39. Conroy PJ et al (2009) Antibody production, design and use for biosensor-based applications. Semin Cell Dev Biol 20(1):10–26

    Article  PubMed  CAS  Google Scholar 

  40. Zhang Y et al (2007) Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer. Sensor Actuator B Chem 123(2):784–792

    Article  Google Scholar 

  41. Yu JCC, Lai EPC (2005) Interaction of ochratoxin A with molecularly imprinted polypyrrole film on surface plasmon resonance sensor. React Funct Polym 63(3):171–176

    Article  CAS  Google Scholar 

  42. Joung HA et al (2008) High sensitivity detection of 16s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor. Anal Chim Acta 630(2):168–173

    Article  PubMed  CAS  Google Scholar 

  43. Wark KL, Hudson PJ (2006) Latest technologies for the enhancement of antibody affinity. Adv Drug Deliv Rev 58(5–6):657–670

    Article  PubMed  CAS  Google Scholar 

  44. Nieba L, Krebber A, Pluckthun A (1996) Competition BIAcore for measuring true affinities: large differences from values determined from binding kinetics. Anal Biochem 234(2):155–165

    Article  PubMed  CAS  Google Scholar 

  45. Friguet B et al (1985) Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent-assay. J Immunol Meth 77(2):305–319

    Article  CAS  Google Scholar 

  46. Pope ME et al (2009) Anti-peptide antibody screening: selection of high affinity monoclonal reagents by a refined surface plasmon resonance technique. J Immunol Meth 341(1–2):86–96

    Article  CAS  Google Scholar 

  47. Achi R, Mata L (1997) Oocyst size of Cryptosporidium sp. (Apicomplexa: Cryptosporidildae) suggest the presence of C. parvum in Costa Rican children. Rev Biol Trop 45(1B):615–618

    Google Scholar 

  48. Kubitschek HE (1990) Cell-volume increase in Escherichia coli after shifts to richer media. J Bacteriol 172(1):94–101

    PubMed  CAS  Google Scholar 

  49. Prasad BVV et al (2001) Structural studies on gastroenteritis viruses. In: Chadwick D, Goode JA (eds) Gastroenteritis viruses, pp 26–46

    Chapter  Google Scholar 

  50. Papageorgiou AC, Tranter HS, Acharya KR (1998) Crystal structure of microbial superantigen staphylococcal enterotoxin B at 1.5 angstrom resolution: implications for superantigen recognition by MHC class II molecules and T-cell receptors. J Mol Biol 277(1):61–79

    Article  PubMed  CAS  Google Scholar 

  51. Ban N et al (1994) Crystal-structure of an idiotype antiidiotype Fab complex. Proc Natl Acad Sci USA 91(5):1604–1608

    Article  PubMed  CAS  Google Scholar 

  52. Wu CM, Lin LY (2004) Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance. Biosens Bioelectron 20(4):864–871

    Article  PubMed  CAS  Google Scholar 

  53. Yu QM et al (2005) Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor. Sens Actuators, B 107(1):193–201

    Article  Google Scholar 

  54. Mauriz E et al (2006) Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor. Anal Chim Acta 561(1–2):40–47

    Article  CAS  Google Scholar 

  55. Kawaguchi T et al (2007) Fabrication of a novel immunosensor using functionalized self-assembled monolayer for trace level detection of TNT by surface plasmon resonance. Talanta 72(2):554–560

    Article  PubMed  CAS  Google Scholar 

  56. Naimushin AN et al (2002) Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor. Biosens Bioelectron 17(6–7):573–584

    Article  PubMed  CAS  Google Scholar 

  57. Cho HS, Kim TJ (2007) Comparison of surface plasmon resonance imaging and enzyme-linked immunosorbent assay for the detection of antibodies against iridovirus in rock bream (Oplegnathus fasciatus). J Vet Diagn Investig 19(4):414–416

    Article  Google Scholar 

  58. Hodnik V, Anderluh G (2009) Toxin detection by surface plasmon resonance. Sensors 9(3):1339–1354

    Article  PubMed  CAS  Google Scholar 

  59. Hennion MC, Barcelo D (1998) Strengths and limitations of immunoassays for effective and efficient use for pesticide analysis in water samples: a review. Anal Chim Acta 362(1):3–34

    Article  CAS  Google Scholar 

  60. Boozer C et al (2006) Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Curr Opin Biotechnol 17(4):400–405

    Article  PubMed  CAS  Google Scholar 

  61. Chinowsky TM et al (2007) Compact, high performance surface plasmon resonance imaging system. Biosens Bioelectron 22(9–10):2208–2215

    Article  PubMed  CAS  Google Scholar 

  62. Alvarez-Rueda N et al (2007) Generation of llama single-domain antibodies against methotrexate, a prototypical hapten. Mol Immunol 44(7):1680–1690

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott D. Soelberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Soelberg, S.D., Furlong, C.E. (2013). Biosensors and Bioassays for Ecological Risk Monitoring and Assessment. In: Laws, E. (eds) Environmental Toxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5764-0_6

Download citation

Publish with us

Policies and ethics