Skip to main content

MSCs in Solid Tumors and Hematological Malignancies: From Basic Biology to Therapeutic Applications

  • Chapter
  • First Online:
Mesenchymal Stromal Cells

Abstract

Compelling experimental evidence has recently unveiled that the tumor microenvironment plays a crucial role in tumor progression. Importantly, bone ­marrow-derived mesenchymal stromal cells interact with tumor cells, and these interactions trigger a series of signaling responses that ultimately favor tumor progression and survival. In this chapter, we will describe how the stroma can influence tumor fate and also how we can utilize these stromal cells to deliver antitumoral therapeutic agents based on their innate tropism for tumors and injury sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gatenby RA, Gillies RJ (2008) A microenvironmental model of carcinogenesis. Nat Rev Cancer 8(1):56–61

    Article  PubMed  CAS  Google Scholar 

  2. Cho KR (2009) Ovarian cancer update: lessons from morphology, molecules, and mice. Arch Pathol Lab Med 133(11):1775–1781

    PubMed  Google Scholar 

  3. Palmero EI, Achatz MI, Ashton-Prolla P, Olivier M, Hainaut P (2010) Tumor protein 53 mutations and inherited cancer: beyond Li-fraumeni syndrome. Curr Opin Oncol 22(1):64–69

    Article  PubMed  CAS  Google Scholar 

  4. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301(5895):89–92

    Article  PubMed  CAS  Google Scholar 

  5. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400

    Article  PubMed  CAS  Google Scholar 

  6. Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M et al (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046):1262–1266

    Article  PubMed  CAS  Google Scholar 

  7. Gilliland DG (2001) Hematologic malignancies. Curr Opin Hematol 8(4):189–191

    Article  PubMed  CAS  Google Scholar 

  8. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853):1108–1113

    Article  PubMed  CAS  Google Scholar 

  9. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA et al (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467(7319):1109–1113

    Article  PubMed  CAS  Google Scholar 

  10. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  PubMed  CAS  Google Scholar 

  11. Weaver VM, Howlett AR, Langton-Webster B, Petersen OW, Bissell MJ (1995) The development of a functionally relevant cell culture model of progressive human breast cancer. Semin Cancer Biol 6(3):175–184

    Article  PubMed  CAS  Google Scholar 

  12. Bissell MJ, Labarge MA (2005) Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7(1):17–23

    PubMed  CAS  Google Scholar 

  13. Kenny PA, Lee GY, Bissell MJ (2007) Targeting the tumor microenvironment. Front Biosci 12:3468–3474

    Article  PubMed  CAS  Google Scholar 

  14. Park CC, Bissell MJ, Barcellos-Hoff MH (2000) The influence of the microenvironment on the malignant phenotype. Mol Med Today 6(8):324–329

    Article  PubMed  CAS  Google Scholar 

  15. Kopfstein L, Christofori G (2006) Metastasis: cell-autonomous mechanisms versus contributions by the tumor microenvironment. Cell Mol Life Sci 63(4):449–468

    Article  PubMed  CAS  Google Scholar 

  16. Lorusso G, Ruegg C (2008) The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 130(6):1091–1103

    Article  PubMed  CAS  Google Scholar 

  17. Mahadevan D, Von Hoff DD (2007) Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther 6(4):1186–1197

    Article  PubMed  CAS  Google Scholar 

  18. Zipori D, Reichman N, Arcavi L, Shtalrid M, Berrebi A, Resnitzky P (1985) In vitro functions of stromal cells from human and mouse bone marrow. Exp Hematol 13(7):603–609

    PubMed  CAS  Google Scholar 

  19. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133(3421):571–573

    Article  Google Scholar 

  20. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  PubMed  CAS  Google Scholar 

  21. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6 Suppl 16):15–18

    PubMed  CAS  Google Scholar 

  22. Petrulio CA, Kim-Schulze S, Kaufman HL (2006) The tumour microenvironment and implications for cancer immunotherapy. Expert Opin Biol Ther 6(7):671–684

    Article  PubMed  CAS  Google Scholar 

  23. Anton K, Glod J (2009) Targeting the tumor stroma in cancer therapy. Curr Pharm Biotechnol 10(2):185–191

    Article  PubMed  CAS  Google Scholar 

  24. Guturu P, Shah V, Urrutia R (2009) Interplay of tumor microenvironment cell types with parenchymal cells in pancreatic cancer development and therapeutic implications. J Gastrointest Cancer 40(1–2):1–9

    Article  PubMed  Google Scholar 

  25. Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA (2009) Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS One 4(11):e7965

    Article  PubMed  CAS  Google Scholar 

  26. Zumsteg A, Christofori G (2009) Corrupt policemen: inflammatory cells promote tumor angiogenesis. Curr Opin Oncol 21(1):60–70

    Article  PubMed  Google Scholar 

  27. Kidd S, Spaeth E, Klopp A, Andreeff M, Hall B, Marini FC (2008) The (in) auspicious role of mesenchymal stromal cells in cancer: be it friend or foe. Cytotherapy 10(7):657–667

    Article  PubMed  CAS  Google Scholar 

  28. Pollard JW (2008) Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 84(3):623–630

    Article  PubMed  CAS  Google Scholar 

  29. Dvorak HF (1986) Tumors: wounds that do not heal similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659

    Article  PubMed  CAS  Google Scholar 

  30. Radisky ES, Radisky DC (2007) Stromal induction of breast cancer: inflammation and invasion. Rev Endocr Metab Disord 8(3):279–287

    Article  PubMed  Google Scholar 

  31. Bierie B, Moses HL (2006) TGF-beta and cancer. Cytokine Growth Factor Rev 17(1–2):29–40

    Article  PubMed  CAS  Google Scholar 

  32. Biswas S, Chytil A, Washington K, Romero-Gallo J, Gorska AE, Wirth PS et al (2004) Transforming growth factor beta receptor type II inactivation promotes the establishment and progression of colon cancer. Cancer Res 64(14):4687–4692

    Article  PubMed  CAS  Google Scholar 

  33. Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R et al (2005) Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 24(32):5053–5068

    Article  PubMed  CAS  Google Scholar 

  34. Nyberg P, Salo T, Kalluri R (2008) Tumor microenvironment and angiogenesis. Front Biosci 13:6537–6553

    Article  PubMed  CAS  Google Scholar 

  35. Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW (2006) Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80(6):1183–1196

    Article  PubMed  CAS  Google Scholar 

  36. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545

    Article  PubMed  CAS  Google Scholar 

  37. Hotchkiss KA, Ashton AW, Klein RS, Lenzi ML, Zhu GH, Schwartz EL (2003) Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration. Cancer Res 63(2):527–533

    PubMed  CAS  Google Scholar 

  38. Micke P, Ostman A (2004) Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer 45(Suppl 2):S163–S175

    Article  PubMed  Google Scholar 

  39. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401

    Article  PubMed  CAS  Google Scholar 

  40. Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S et al (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68(11):4331–4339

    Article  PubMed  CAS  Google Scholar 

  41. De Wever O, Demetter P, Mareel M, Bracke M (2008) Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 123(10):2229–2238

    Article  PubMed  CAS  Google Scholar 

  42. Sugimoto H, Mundel TM, Kieran MW, Kalluri R (2006) Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5(12):1640–1646

    Article  PubMed  CAS  Google Scholar 

  43. Singer CF, Kronsteiner N, Marton E, Kubista M, Cullen KJ, Hirtenlehner K et al (2002) MMP-2 and MMP-9 expression in breast cancer-derived human fibroblasts is differentially regulated by stromal-epithelial interactions. Breast Cancer Res Treat 72(1):69–77

    Article  PubMed  CAS  Google Scholar 

  44. Orimo A (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    Article  PubMed  CAS  Google Scholar 

  45. Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S et al (2009) Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 101(2):293–299

    Article  PubMed  CAS  Google Scholar 

  46. Lewis MP, Lygoe KA, Nystrom ML, Anderson WP, Speight PM, Marshall JF et al (2004) Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer 90(4):822–832

    Article  PubMed  CAS  Google Scholar 

  47. Radisky DC, Kenny PA, Bissell MJ (2007) Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? J Cell Biochem 101(4):830–839

    Article  PubMed  CAS  Google Scholar 

  48. Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 154(1):8–20

    Article  CAS  Google Scholar 

  49. Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112(12):1776–1784

    PubMed  CAS  Google Scholar 

  50. Shook D, Keller R (2003) Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 120(11):1351–1383, Epub 2003/11/19

    Article  PubMed  CAS  Google Scholar 

  51. Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15(6):740–746

    Article  PubMed  CAS  Google Scholar 

  52. Barrallo-Gimeno A, Nieto MA (2005) The snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132(14):3151–3161

    Article  PubMed  CAS  Google Scholar 

  53. Jiang J, Tang YL, Liang XH (2011) EMT: a new vision of hypoxia promoting cancer progression. Cancer Biol Ther 11(10):714–723

    PubMed  CAS  Google Scholar 

  54. Nawshad A, LaGamba D, Hay ED (2004) Transforming growth factor beta (TGFbeta) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT). Arch Oral Biol 49(9):675–689

    Article  PubMed  CAS  Google Scholar 

  55. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939

    Article  PubMed  CAS  Google Scholar 

  56. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    Article  PubMed  CAS  Google Scholar 

  57. Battula VL, Evans KW, Hollier BG, Shi Y, Marini FC, Ayyanan A et al (2010) Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells 28(8):1435–1445

    Article  PubMed  CAS  Google Scholar 

  58. Martin FT, Dwyer RM, Kelly J, Khan S, Murphy JM, Curran C et al (2010) Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 124(2):317–326

    Article  PubMed  CAS  Google Scholar 

  59. Perry JM, Li L (2007) Disrupting the stem cell niche: good seeds in bad soil. Cell 129(6):1045–1047

    Article  PubMed  CAS  Google Scholar 

  60. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611

    Article  PubMed  CAS  Google Scholar 

  61. Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107(5):1761–1767

    Article  PubMed  CAS  Google Scholar 

  62. Jung Y, Wang J, Schneider A, Sun YX, Koh-Paige AJ, Osman NI et al (2006) Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone 38(4):497–508

    Article  PubMed  CAS  Google Scholar 

  63. Sun YX, Schneider A, Jung Y, Wang J, Dai J, Cook K et al (2005) Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 20(2):318–329

    Article  PubMed  CAS  Google Scholar 

  64. Burger JA, Burkle A (2007) The CXCR4 chemokine receptor in acute and chronic leukaemia: a marrow homing receptor and potential therapeutic target. Br J Haematol 137(4):288–296

    Article  PubMed  CAS  Google Scholar 

  65. Juarez J, Dela Pena A, Baraz R, Hewson J, Khoo M, Cisterne A et al (2007) CXCR4 antagonists mobilize childhood acute lymphoblastic leukemia cells into the peripheral blood and inhibit engraftment. Leukemia 21(6):1249–1257

    Article  PubMed  CAS  Google Scholar 

  66. Spiegel A, Kollet O, Peled A, Abel L, Nagler A, Bielorai B et al (2004) Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood 103(8):2900–2907

    Article  PubMed  CAS  Google Scholar 

  67. Mohle R, Failenschmid C, Bautz F, Kanz L (1999) Overexpression of the chemokine receptor CXCR4 in B cell chronic lymphocytic leukemia is associated with increased functional response to stromal cell-derived factor-1 (SDF-1). Leukemia 13(12):1954–1959

    Article  PubMed  CAS  Google Scholar 

  68. Mohle R, Schittenhelm M, Failenschmid C, Bautz F, Kratz-Albers K, Serve H et al (2000) Functional response of leukaemic blasts to stromal cell-derived factor-1 correlates with preferential expression of the chemokine receptor CXCR4 in acute myelomonocytic and lymphoblastic leukaemia. Br J Haematol 110(3):563–572

    Article  PubMed  CAS  Google Scholar 

  69. Voermans C, van Heese WP, de Jong I, Gerritsen WR, van Der Schoot CE (2002) Migratory behavior of leukemic cells from acute myeloid leukemia patients. Leukemia 16(4):650–657

    Article  PubMed  CAS  Google Scholar 

  70. Bradstock KF, Makrynikola V, Bianchi A, Shen W, Hewson J, Gottlieb DJ (2000) Effects of the chemokine stromal cell-derived factor-1 on the migration and localization of precursor-B acute lymphoblastic leukemia cells within bone marrow stromal layers. Leukemia 14(5):882–888

    Article  PubMed  CAS  Google Scholar 

  71. Dialynas DP, Shao L, Billman GF, Yu J (2001) Engraftment of human T-cell acute lymphoblastic leukemia in immunodeficient NOD/SCID mice which have been preconditioned by injection of human cord blood. Stem Cells 19(5):443–452

    Article  PubMed  CAS  Google Scholar 

  72. Shen W, Bendall LJ, Gottlieb DJ, Bradstock KF (2001) The chemokine receptor CXCR4 enhances integrin-mediated in vitro adhesion and facilitates engraftment of leukemic precursor-B cells in the bone marrow. Exp Hematol 29(12):1439–1447

    Article  PubMed  CAS  Google Scholar 

  73. Konoplev S, Rassidakis GZ, Estey E, Kantarjian H, Liakou CI, Huang X et al (2007) Overexpression of CXCR4 predicts adverse overall and event-free survival in patients with unmutated FLT3 acute myeloid leukemia with normal karyotype. Cancer 109(6):1152–1156

    Article  PubMed  CAS  Google Scholar 

  74. Rombouts EJ, Pavic B, Lowenberg B, Ploemacher RE (2004) Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood 104(2):550–557

    Article  PubMed  CAS  Google Scholar 

  75. Spoo AC, Lubbert M, Wierda WG, Burger JA (2007) CXCR4 Is a prognostic marker in acute myelogenous leukemia. Blood 109(2):786–791

    Article  PubMed  CAS  Google Scholar 

  76. Zeng Z, Samudio IJ, Munsell M, An J, Huang Z, Estey E et al (2006) Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias. Mol Cancer Ther 5(12):3113–3121

    Article  PubMed  CAS  Google Scholar 

  77. Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK et al (2009) Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 113(24):6206–6214

    Article  PubMed  CAS  Google Scholar 

  78. Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM et al (2007) Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 109(7):2708–2717

    PubMed  CAS  Google Scholar 

  79. Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell’Aquila M, Kipps TJ (2000) ­Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 96(8):2655–2663

    PubMed  CAS  Google Scholar 

  80. Jensen PO, Mortensen BT, Hodgkiss RJ, Iversen PO, Christensen IJ, Helledie N et al (2000) Increased cellular hypoxia and reduced proliferation of both normal and leukaemic cells during progression of acute myeloid leukaemia in rats. Cell Prolif 33(6):381–395

    Article  PubMed  CAS  Google Scholar 

  81. Mortensen BT, Jensen PO, Helledie N, Iversen PO, Ralfkiaer E, Larsen JK et al (1998) Changing bone marrow micro-environment during development of acute myeloid leukaemia in rats. Br J Haematol 102(2):458–464

    Article  PubMed  CAS  Google Scholar 

  82. Wellmann S, Guschmann M, Griethe W, Eckert C, von Stackelberg A, Lottaz C et al (2004) Activation of the HIF pathway in childhood ALL, prognostic implications of VEGF. Leukemia 18(5):926–933

    Article  PubMed  CAS  Google Scholar 

  83. Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W (2003) Chemokine receptor CXCR4 downregulated by von hippel-lindau tumour suppressor pVHL. Nature 425(6955): 307–311

    Article  PubMed  CAS  Google Scholar 

  84. Fiegl M, Samudio I, Clise-Dwyer K, Burks J, Mnjoyan Z, Andreeff M (2009) CXCR4 ­expression and biologic activity in acute myeloid leukemia are dependent on oxygen partial pressure. Blood 113:1504–1512

    Article  PubMed  CAS  Google Scholar 

  85. Hartmann TN, Burger JA, Glodek A, Fujii N, Burger M (2005) CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene 24:4462–4471

    Article  PubMed  CAS  Google Scholar 

  86. Sanz-Rodriguez F, Hidalgo A, Teixido J (2001) Chemokine stromal cell-derived factor-1[alpha] modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 97:346–351

    Article  PubMed  CAS  Google Scholar 

  87. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A et al (2003) Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 9(9):1158–1165

    Article  PubMed  CAS  Google Scholar 

  88. Tabe Y, Jin L, Tsutsumi-Ishii Y, Xu Y, McQueen T, Priebe W et al (2007) Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Cancer Res 67(2):684–694

    Article  PubMed  CAS  Google Scholar 

  89. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12(10):1167–1174

    Article  PubMed  CAS  Google Scholar 

  90. Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S et al (2004) CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 103(8):2981–2989

    Article  PubMed  CAS  Google Scholar 

  91. Turley EA, Noble PW, Bourguignon LY (2002) Signaling properties of hyaluronan receptors. J Biol Chem 277(7):4589–4592

    Article  PubMed  CAS  Google Scholar 

  92. Hertweck MK, Erdfelder F, Kreuzer KA (2011) CD44 in hematological neoplasias. Ann Hematol 90(5):493–508

    Article  PubMed  CAS  Google Scholar 

  93. Denys H, Derycke L, Hendrix A, Westbroek W, Gheldof A, Narine K et al (2008) Differential impact of TGF-beta and EGF on fibroblast differentiation and invasion reciprocally promotes colon cancer cell invasion. Cancer Lett 266(2):263–274

    Article  PubMed  CAS  Google Scholar 

  94. Wang P, Bowl MR, Bender S, Peng J, Farber L, Chen J et al (2008) Parafibromin, a component of the human PAF complex, regulates growth factors and is required for embryonic development and survival in adult mice. Mol Cell Biol 28(9):2930–2940

    Article  PubMed  CAS  Google Scholar 

  95. Castello-Cros R, Cukierman E (2009) Stromagenesis during tumorigenesis: characterization of tumor-associated fibroblasts and stroma-derived 3D matrices. Methods Mol Biol 522: 275–305

    Article  PubMed  CAS  Google Scholar 

  96. Amatangelo MD, Bassi DE, Klein-Szanto AJ, Cukierman E (2005) Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. Am J Pathol 167(2):475–488

    Article  PubMed  CAS  Google Scholar 

  97. Sund M, Kalluri R (2009) Tumor stroma derived biomarkers in cancer. Cancer Metastasis Rev 28(1–2):177–183

    Article  PubMed  Google Scholar 

  98. Brown LF, Dvorak AM, Dvorak HF (1989) Leaky vessels, fibrin deposition, and fibrosis: a sequence of events common to solid tumors and to many other types of disease. Am Rev Respir Dis 140(4):1104–1107

    PubMed  CAS  Google Scholar 

  99. Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G (2004) Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 14(6):1035–1041

    PubMed  Google Scholar 

  100. Shake JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers J, Redmond JM et al (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 73(6):1919–1925; discussion 26

    Article  PubMed  Google Scholar 

  101. Pereira RF, Halford KW, O’Hara MD, Leeper DB, Sokolov BP, Pollard MD et al (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA 92(11):4857–4861

    Article  PubMed  CAS  Google Scholar 

  102. Kumamoto M, Nishiwaki T, Matsuo N, Kimura H, Matsushima K (2009) Minimally cultured bone marrow mesenchymal stem cells ameliorate fibrotic lung injury. Eur Respir J 34(3):740–748

    Article  PubMed  CAS  Google Scholar 

  103. Semedo P, Correa-Costa M, Antonio Cenedeze M, Maria Avancini Costa Malheiros D, Antonia dos Reis M, Shimizu MH et al (2009) Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells 27(12):3063

    PubMed  CAS  Google Scholar 

  104. Devine SM, Bartholomew AM, Mahmud N, Nelson M, Patil S, Hardy W et al (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 29(2):244–255

    Article  PubMed  CAS  Google Scholar 

  105. Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A et al (2009) Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 27(10):2614–2623

    Article  PubMed  CAS  Google Scholar 

  106. Satoh H, Kishi K, Tanaka T, Kubota Y, Nakajima T, Akasaka Y et al (2004) Transplanted mesenchymal stem cells are effective for skin regeneration in acute cutaneous wounds. Cell Transplant 13(4):405–412

    Article  PubMed  Google Scholar 

  107. Kahler CM, Wechselberger J, Hilbe W, Gschwendtner A, Colleselli D, Niederegger H et al (2007) Peripheral infusion of rat bone marrow derived endothelial progenitor cells leads to homing in acute lung injury. Respir Res 8:50

    Article  PubMed  CAS  Google Scholar 

  108. Le Blanc K (2006) Mesenchymal stromal cells: tissue repair and immune modulation. Cytotherapy 8(6):559–561

    Article  PubMed  CAS  Google Scholar 

  109. Mansilla E, Marin GH, Drago H, Sturla F, Salas E, Gardiner C et al (2006) Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine. Transplant Proc 38(3):967–969

    Article  PubMed  CAS  Google Scholar 

  110. Liao W, Zhong J, Yu J, Xie J, Liu Y, Du L et al (2009) Therapeutic benefit of human umbilical cord derived mesenchymal stromal cells in intracerebral hemorrhage rat: implications of anti-inflammation and angiogenesis. Cell Physiol Biochem 24(3–4):307–316

    Article  PubMed  CAS  Google Scholar 

  111. van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ (2009) Mesenchymal stem cell treatment after neonatal hypoxic-ischemic brain injury improves behavioral outcome and induces neuronal and oligodendrocyte regeneration. Brain Behav Immun 24(3):387–393

    Article  PubMed  CAS  Google Scholar 

  112. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J et al (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65(8): 3307–3318

    PubMed  CAS  Google Scholar 

  113. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62(13):3603–3608

    PubMed  CAS  Google Scholar 

  114. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN et al (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 96(21):1593–1603

    Article  PubMed  CAS  Google Scholar 

  115. Allers C, Sierralta WD, Neubauer S, Rivera F, Minguell JJ, Conget PA (2004) Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice. Transplantation 78(4):503–508

    Article  PubMed  Google Scholar 

  116. Erices AA, Allers CI, Conget PA, Rojas CV, Minguell JJ (2003) Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodeficient mice after systemic infusion. Cell Transplant 12(6):555–561

    PubMed  Google Scholar 

  117. Kim SM, Oh JH, Park SA, Ryu CH, Lim JY, Kim DS et al (2010) Irradiation enhances the tumor tropism and therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand-secreting human umbilical cord blood-derived mesenchymal stem cells in glioma therapy. Stem Cells 28(12):2217–2228

    Article  PubMed  Google Scholar 

  118. Klopp AH, Spaeth EL, Dembinski JL, Woodward WA, Munshi A, Meyn RE et al (2007) Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 67(24):11687–11695

    Article  PubMed  CAS  Google Scholar 

  119. Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E et al (2010) Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res 70(9):3718–3729

    Article  PubMed  CAS  Google Scholar 

  120. Kim SM, Lim JY, Park SI, Jeong CH, Oh JH, Jeong M et al (2008) Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma. Cancer Res 68(23):9614–9623

    Article  PubMed  CAS  Google Scholar 

  121. Loebinger MR, Eddaoudi A, Davies D, Janes SM (2009) Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 69(10):4134–4142

    Article  PubMed  CAS  Google Scholar 

  122. Elenbaas B, Weinberg RA (2001) Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 264(1):169–184

    Article  PubMed  CAS  Google Scholar 

  123. Kunz-Schughart LA, Knuechel R (2002) Tumor-associated fibroblasts (part I): active stromal participants in tumor development and progression? Histol Histopathol 17(2):599–621

    PubMed  CAS  Google Scholar 

  124. Kunz-Schughart LA, Knuechel R (2002) Tumor-associated fibroblasts (part II): functional impact on tumor tissue. Histol Histopathol 17(2):623–637

    PubMed  CAS  Google Scholar 

  125. Roni V, Habeler W, Parenti A, Indraccolo S, Gola E, Tosello V et al (2003) Recruitment of human umbilical vein endothelial cells and human primary fibroblasts into experimental tumors growing in SCID mice. Exp Cell Res 287(1):28–38

    Article  PubMed  CAS  Google Scholar 

  126. Ishii G, Sangai T, Oda T, Aoyagi Y, Hasebe T, Kanomata N et al (2003) Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun 309(1):232–240

    Article  PubMed  CAS  Google Scholar 

  127. Sangai T, Ishii G, Kodama K, Miyamoto S, Aoyagi Y, Ito T et al (2005) Effect of differences in cancer cells and tumor growth sites on recruiting bone marrow-derived endothelial cells and myofibroblasts in cancer-induced stroma. Int J Cancer 115(6):885–892

    Article  PubMed  CAS  Google Scholar 

  128. Reddy K, Zhou Z, Schadler K, Jia SF, Kleinerman ES (2008) Bone marrow subsets differentiate into endothelial cells and pericytes contributing to Ewing’s tumor vessels. Mol Cancer Res 6(6):929–936

    Article  PubMed  CAS  Google Scholar 

  129. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579–1586

    Article  PubMed  CAS  Google Scholar 

  130. Torsvik A, Rosland GV, Svendsen A, Molven A, Immervoll H, McCormack E et al (2010) Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track – letter. Cancer Res 70(15):6393–6396

    Article  PubMed  CAS  Google Scholar 

  131. Vogel G (2010) Cell biology. To scientists’ dismay, mixed-up cell lines strike again. Science 329(5995):1004

    Article  PubMed  CAS  Google Scholar 

  132. Willmon C, Harrington K, Kottke T, Prestwich R, Melcher A, Vile R (2009) Cell carriers for oncolytic viruses: Fed Ex for cancer therapy. Mol Ther 17(10):1667–1676, Epub 2009/08/20

    Article  PubMed  CAS  Google Scholar 

  133. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W et al (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 97(23):12846–12851

    Article  PubMed  CAS  Google Scholar 

  134. Benedetti S, Pirola B, Pollo B, Magrassi L, Bruzzone MG, Rigamonti D et al (2000) Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 6(4):447–450

    Article  PubMed  CAS  Google Scholar 

  135. Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS (2002) The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res 62(20):5657–5663

    PubMed  CAS  Google Scholar 

  136. Yuan X, Hu J, Belladonna ML, Black KL, Yu JS (2006) Interleukin-23-expressing bone ­marrow-derived neural stem-like cells exhibit antitumor activity against intracranial glioma. Cancer Res 66(5):2630–2638

    Article  PubMed  CAS  Google Scholar 

  137. Kim SK, Kim SU, Park IH, Bang JH, Aboody KS, Wang KC et al (2006) Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res 12(18):5550–5556

    Article  PubMed  CAS  Google Scholar 

  138. Mader EK, Maeyama Y, Lin Y, Butler GW, Russell HM, Galanis E et al (2009) Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res 15(23):7246–7255

    Article  PubMed  CAS  Google Scholar 

  139. Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H et al (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11(14):1155–1164

    Article  PubMed  CAS  Google Scholar 

  140. Ren C, Kumar S, Chanda D, Kallman L, Chen J, Mountz JD et al (2008) Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther 15(21):1446–1453

    Article  PubMed  CAS  Google Scholar 

  141. Xin H, Kanehira M, Mizuguchi H, Hayakawa T, Kikuchi T, Nukiwa T et al (2007) Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells 25(7):1618–1626

    Article  PubMed  CAS  Google Scholar 

  142. Zischek C, Niess H, Ischenko I, Conrad C, Huss R, Jauch KW et al (2009) Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann Surg 250(5):747–753

    Article  PubMed  Google Scholar 

  143. Lepperdinger G, Brunauer R, Jamnig A, Laschober G, Kassem M (2008) Controversial issue: is it safe to employ mesenchymal stem cells in cell-based therapies? Exp Gerontol 43(11):1018–1023

    Article  PubMed  CAS  Google Scholar 

  144. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC et al (2005) Spontaneous human adult stem cell transformation. Cancer Res 65(8):3035–3039

    PubMed  CAS  Google Scholar 

  145. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228

    Article  PubMed  CAS  Google Scholar 

  146. Anker PS I’t, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22(7):1338–1345

    Article  Google Scholar 

  147. Kidd S, Caldwell L, Dietrich M, Samudio I, Spaeth EL, Watson K et al (2010) Mesenchymal stromal cells alone or expressing interferon-beta suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy 12(5):615–625

    Article  PubMed  CAS  Google Scholar 

  148. Ren C, Kumar S, Chanda D, Chen J, Mountz JD, Ponnazhagan S (2008) Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model. Stem Cells 26(9):2332–2338

    Article  PubMed  CAS  Google Scholar 

  149. Eliopoulos N, Francois M, Boivin MN, Martineau D, Galipeau J (2008) Neo-organoid of marrow mesenchymal stromal cells secreting interleukin-12 for breast cancer therapy. Cancer Res 68(12):4810–4818

    Article  PubMed  CAS  Google Scholar 

  150. Stagg J, Lejeune L, Paquin A, Galipeau J (2004) Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther 15(6):597–608

    Article  PubMed  CAS  Google Scholar 

  151. Chen X, Lin X, Zhao J, Shi W, Zhang H, Wang Y et al (2008) A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol Ther 16(4):749–756

    Article  PubMed  CAS  Google Scholar 

  152. Seo SH, Kim KS, Park SH, Suh YS, Kim SJ, Jeun SS et al (2011) The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther 18(5):488–495

    Article  PubMed  CAS  Google Scholar 

  153. Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L (2006) Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 5(3):755–766

    Article  PubMed  CAS  Google Scholar 

  154. Stoff-Khalili MA, Rivera AA, Mathis JM, Banerjee NS, Moon AS, Hess A et al (2007) Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat 105(2):157–167

    Article  PubMed  Google Scholar 

  155. Dembinski JL, Spaeth EL, Fueyo J, Gomez-Manzano C, Studeny M, Andreeff M et al (2010) Reduction of nontarget infection and systemic toxicity by targeted delivery of conditionally replicating viruses transported in mesenchymal stem cells. Cancer Gene Ther 17(4): 289–297

    Article  PubMed  CAS  Google Scholar 

  156. Elzaouk L, Moelling K, Pavlovic J (2006) Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp Dermatol 15(11):865–874

    Article  PubMed  CAS  Google Scholar 

  157. Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G et al (2009) Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA 106(12):4822–4827, Epub 2009/03/07

    Article  PubMed  CAS  Google Scholar 

  158. Mohr A, Lyons M, Deedigan L, Harte T, Shaw G, Howard L et al (2008) Mesenchymal stem cells expressing TRAIL lead to tumour growth inhibition in an experimental lung cancer model. J Cell Mol Med 12(6B):2628–2643

    Article  PubMed  CAS  Google Scholar 

  159. Mueller LP, Luetzkendorf J, Widder M, Nerger K, Caysa H, Mueller T (2010) TRAIL-transduced multipotent mesenchymal stromal cells (TRAIL-MSC) overcome TRAIL resistance in selected CRC cell lines in vitro and in vivo. Cancer Gene Ther 18(4):229–239

    Article  PubMed  CAS  Google Scholar 

  160. Kanehira M, Xin H, Hoshino K, Maemondo M, Mizuguchi H, Hayakawa T et al (2007) Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther 14(11):894–903

    Article  PubMed  CAS  Google Scholar 

  161. Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C (2007) Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 67(13):6304–6313

    Article  PubMed  CAS  Google Scholar 

  162. Uchibori R, Okada T, Ito T, Urabe M, Mizukami H, Kume A et al (2009) Retroviral vector-producing mesenchymal stem cells for targeted suicide cancer gene therapy. J Gene Med 11(5):373–381

    Article  PubMed  CAS  Google Scholar 

  163. Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4(1):33–45

    Article  PubMed  CAS  Google Scholar 

  164. Bourguignon LY, Spevak CC, Wong G, Xia W, Gilad E (2009) Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker nanog and the production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells. J Biol Chem 284(39):26533–26546

    Article  PubMed  CAS  Google Scholar 

  165. Bourguignon LY, Xia W, Wong G (2009) Hyaluronan-mediated CD44 interaction with p300 and SIRT1 regulates beta-catenin signaling and NFkappaB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells. J Biol Chem 284(5):2657–2671

    Article  PubMed  CAS  Google Scholar 

  166. Fujita Y, Kitagawa M, Nakamura S, Azuma K, Ishii G, Higashi M et al (2002) CD44 signaling through focal adhesion kinase and its anti-apoptotic effect. FEBS Lett 528(1–3):101–108

    Article  PubMed  CAS  Google Scholar 

  167. Klingbeil P, Marhaba R, Jung T, Kirmse R, Ludwig T, Zoller M (2009) CD44 variant isoforms promote metastasis formation by a tumor cell-matrix cross-talk that supports adhesion and apoptosis resistance. Mol Cancer Res 7(2):168–179

    Article  PubMed  CAS  Google Scholar 

  168. Palyi-Krekk Z, Barok M, Isola J, Tammi M, Szollosi J, Nagy P (2007) Hyaluronan-induced masking of ErbB2 and CD44-enhanced trastuzumab internalisation in trastuzumab resistant breast cancer. Eur J Cancer 43(16):2423–2433

    Article  PubMed  CAS  Google Scholar 

  169. Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI (1992) Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci USA 89(24):12160–12164

    Article  PubMed  CAS  Google Scholar 

  170. Nagabhushan M, Pretlow TG, Guo YJ, Amini SB, Pretlow TP, Sy MS (1996) Altered expression of CD44 in human prostate cancer during progression. Am J Clin Pathol 106(5):647–651

    PubMed  CAS  Google Scholar 

  171. Wallach-Dayan SB, Rubinstein AM, Hand C, Breuer R, Naor D (2008) DNA vaccination with CD44 variant isoform reduces mammary tumor local growth and lung metastasis. Mol Cancer Ther 7(6):1615–1623

    Article  PubMed  CAS  Google Scholar 

  172. Wagner SN, Wagner C, Reinhold U, Funk R, Zoller M, Goos M (1998) Predominant expression of CD44 splice variant v10 in malignant and reactive human skin lymphocytes. J Invest Dermatol 111(3):464–471

    Article  PubMed  CAS  Google Scholar 

  173. Legg JW, Lewis CA, Parsons M, Ng T, Isacke CM (2002) A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility. Nat Cell Biol 4(6):399–407

    Article  PubMed  CAS  Google Scholar 

  174. Yonemura S, Hirao M, Doi Y, Takahashi N, Kondo T, Tsukita S (1998) Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J Cell Biol 140(4):885–895

    Article  PubMed  CAS  Google Scholar 

  175. Borland G, Ross JA, Guy K (1998) Forms and functions of CD44. Immunology 93(2):139–148

    Article  PubMed  CAS  Google Scholar 

  176. Yu Q, Toole BP, Stamenkovic I (1997) Induction of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor cell surface CD44 function. J Exp Med 186(12):1985–1996

    Article  PubMed  CAS  Google Scholar 

  177. Zeng C, Toole BP, Kinney SD, Kuo JW, Stamenkovic I (1998) Inhibition of tumor growth in vivo by hyaluronan oligomers. Int J Cancer 77(3):396–401

    Article  PubMed  CAS  Google Scholar 

  178. Matsuki H, Yonezawa K, Obata K, Iwata K, Nakamura H, Okada Y et al (2003) Monoclonal antibodies with defined recognition sequences in the stem region of CD44: detection of differential glycosylation of CD44 between tumor and stromal cells in tissue. Cancer Res 63(23):8278–8283

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Andreeff M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jacamo, R., Spaeth, E., Battula, V., Marini, F., Andreeff, M. (2013). MSCs in Solid Tumors and Hematological Malignancies: From Basic Biology to Therapeutic Applications. In: Hematti, P., Keating, A. (eds) Mesenchymal Stromal Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5711-4_12

Download citation

Publish with us

Policies and ethics