Cross-Talk Between MSCs and Their Environments

  • Thomas P. Lozito
  • Rocky S. Tuan
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


The mesenchymal stromal/stem cell (MSC) has garnered attention as a promising candidate cell type for cell-based therapeutics, partly, by virtue of its ability to differentiate into a variety of cell types. However, the true therapeutic potential of MSCs may lie in the regulatory influences they exert on their environments. Indeed, as a result of their natural homing response to wound sites, MSCs come into contact with a variety of environments and cell types as they leave their perivascular niches. This chapter describes the interactions between MSCs and four such environmental signals, specifically the vasculature, the extracellular matrix, the immune system, and cancer. In vivo and in vitro studies detailing the effects of MSCs on each are presented, with special attention paid to cases of cross-talk in which MSCs alter the very environmental signals acting upon them. Finally, MSC performance in clinical trials is discussed and compared to expectations based on basic science findings. This chapter also identifies gaps in knowledge and current understandings where future research will prove most effective.


Major Histocompatibility Complex Class TReg Cell Vascular Basement Membrane Multipotent Adult Progenitor Cell Perivascular Niche 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supported in part by funding from the Commonwealth of Pennsylvania Department of Health.


  1. 1.
    Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20(3):263–272PubMedGoogle Scholar
  2. 2.
    Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403PubMedGoogle Scholar
  3. 3.
    Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone ­marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247PubMedCrossRefGoogle Scholar
  4. 4.
    Noth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS (2002) Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 20(5):1060–1069PubMedCrossRefGoogle Scholar
  5. 5.
    De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44(8):1928–1942PubMedCrossRefGoogle Scholar
  6. 6.
    Djouad F, Bony C, Haupl T, Uze G, Lahlou N, Louis-Plence P et al (2005) Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther 7(6):R1304–R1315PubMedCrossRefGoogle Scholar
  7. 7.
    Hiraoka K, Grogan S, Olee T, Lotz M (2006) Mesenchymal progenitor cells in adult human articular cartilage. Biorheology 43(3–4):447–454PubMedGoogle Scholar
  8. 8.
    Sekiya I, Larson BL, Vuoristo JT, Cui JG, Prockop DJ (2004) Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs). J Bone Miner Res 19(2):256–264PubMedCrossRefGoogle Scholar
  9. 9.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228PubMedCrossRefGoogle Scholar
  10. 10.
    Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495PubMedCrossRefGoogle Scholar
  11. 11.
    Nesti LJ, Jackson WM, Shanti RM, Koehler SM, Aragon AB, Bailey JR et al (2008) Differentiation potential of multipotent progenitor cells derived from war-traumatized muscle tissue. J Bone Joint Surg Am 90(11):2390–2398PubMedCrossRefGoogle Scholar
  12. 12.
    Janjanin S, Djouad F, Shanti RM, Baksh D, Gollapudi K, Prgomet D et al (2008) Human palatine tonsil: a new potential tissue source of multipotent mesenchymal progenitor cells. Arthritis Res Ther 10(4):R83PubMedCrossRefGoogle Scholar
  13. 13.
    Rzhaninova AA, Gornostaeva SN, Goldshtein DV (2005) Isolation and phenotypical characterization of mesenchymal stem cells from human fetal thymus. Bull Exp Biol Med 139(1):134–140PubMedCrossRefGoogle Scholar
  14. 14.
    Shih DT, Lee DC, Chen SC, Tsai RY, Huang CT, Tsai CC et al (2005) Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells 23(7):1012–1020PubMedCrossRefGoogle Scholar
  15. 15.
    Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61(7):1329–1337PubMedCrossRefGoogle Scholar
  16. 16.
    Petrie C, Tholpady S, Ogle R, Botchwey E (2008) Proliferative capacity and osteogenic potential of novel dura mater stem cells on poly-lactic-co-glycolic acid. J Biomed Mater Res A 85(1):61–71PubMedGoogle Scholar
  17. 17.
    Perry BC, Zhou D, Wu X, Yang FC, Byers MA, Chu TM et al (2008) Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods 14(2):149–156PubMedCrossRefGoogle Scholar
  18. 18.
    Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23(2):220–229PubMedCrossRefGoogle Scholar
  19. 19.
    Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103(5):1669–1675PubMedCrossRefGoogle Scholar
  20. 20.
    Yen BL, Huang HI, Chien CC, Jui HY, Ko BS, Yao M et al (2005) Isolation of multipotent cells from human term placenta. Stem Cells 23(1):3–9PubMedCrossRefGoogle Scholar
  21. 21.
    Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650PubMedCrossRefGoogle Scholar
  22. 22.
    Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC et al (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7(5):393–395PubMedCrossRefGoogle Scholar
  23. 23.
    Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A et al (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116(Pt 9):1827–1835PubMedCrossRefGoogle Scholar
  24. 24.
    D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117(Pt 14):2971–2981PubMedCrossRefGoogle Scholar
  25. 25.
    Belema-Bedada F, Uchida S, Martire A, Kostin S, Braun T (2008) Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2. Cell Stem Cell 2(6):566–575PubMedCrossRefGoogle Scholar
  26. 26.
    Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9(1):204PubMedCrossRefGoogle Scholar
  27. 27.
    Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18(4):696–704PubMedCrossRefGoogle Scholar
  28. 28.
    Jones E, McGonagle D (2008) Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford) 47(2):126–131CrossRefGoogle Scholar
  29. 29.
    Gruber R, Kandler B, Holzmann P, Vogele-Kadletz M, Losert U, Fischer MB et al (2005) Bone marrow stromal cells can provide a local environment that favors migration and formation of tubular structures of endothelial cells. Tissue Eng 11(5–6):896–903PubMedCrossRefGoogle Scholar
  30. 30.
    Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R et al (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102(1):77–85PubMedCrossRefGoogle Scholar
  31. 31.
    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313PubMedCrossRefGoogle Scholar
  32. 32.
    Tintut Y, Alfonso Z, Saini T, Radcliff K, Watson K, Bostrom K et al (2003) Multilineage potential of cells from the artery wall. Circulation 108(20):2505–2510PubMedCrossRefGoogle Scholar
  33. 33.
    Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE (1998) Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13(5):828–838PubMedCrossRefGoogle Scholar
  34. 34.
    Farrington-Rock C, Crofts NJ, Doherty MJ, Ashton BA, Griffin-Jones C, Canfield AE (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110(15):2226–2232PubMedCrossRefGoogle Scholar
  35. 35.
    Toma C, Wagner WR, Bowry S, Schwartz A, Villanueva F (2009) Fate of culture-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics. Circ Res 104(3):398–402PubMedCrossRefGoogle Scholar
  36. 36.
    Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP (2007) Stem cell transplantation: the lung barrier. Transplant Proc 39(2):573–576PubMedCrossRefGoogle Scholar
  37. 37.
    Francois S, Bensidhoum M, Mouiseddine M, Mazurier C, Allenet B, Semont A et al (2006) Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 24(4):1020–1029PubMedCrossRefGoogle Scholar
  38. 38.
    Potapova IA, Cohen IS, Doronin SV (2009) Apoptotic endothelial cells demonstrate increased adhesiveness for human mesenchymal stem cells. J Cell Physiol 219(1):23–30PubMedCrossRefGoogle Scholar
  39. 39.
    Ruster B, Gottig S, Ludwig RJ, Bistrian R, Muller S, Seifried E et al (2006) Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 108(12):3938–3944PubMedCrossRefGoogle Scholar
  40. 40.
    Segers VF, Van Riet I, Andries LJ, Lemmens K, Demolder MJ, De Becker AJ et al (2006) Mesenchymal stem cell adhesion to cardiac microvascular endothelium: activators and mechanisms. Am J Physiol Heart Circ Physiol 290(4):H1370–H1377PubMedCrossRefGoogle Scholar
  41. 41.
    Ip JE, Wu Y, Huang J, Zhang L, Pratt RE, Dzau VJ (2007) Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell 18(8):2873–2882PubMedCrossRefGoogle Scholar
  42. 42.
    Estrada R, Li N, Sarojini H, An J, Lee MJ, Wang E (2009) Secretome from mesenchymal stem cells induces angiogenesis via Cyr61. J Cell Physiol 219(3):563–571PubMedCrossRefGoogle Scholar
  43. 43.
    Sorrell JM, Baber MA, Caplan AI (2009) Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Eng Part A 15(7):1751–1761PubMedCrossRefGoogle Scholar
  44. 44.
    Ghajar CM, Blevins KS, Hughes CC, George SC, Putnam AJ (2006) Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng 12(10):2875–2888PubMedCrossRefGoogle Scholar
  45. 45.
    Katritsis DG, Sotiropoulou PA, Karvouni E, Karabinos I, Korovesis S, Perez SA et al (2005) Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 65(3):321–329PubMedCrossRefGoogle Scholar
  46. 46.
    Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N et al (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106(24):3009–3017PubMedCrossRefGoogle Scholar
  47. 47.
    Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361(9351):45–46PubMedCrossRefGoogle Scholar
  48. 48.
    Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT et al (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107(18):2294–2302PubMedCrossRefGoogle Scholar
  49. 49.
    Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94(1):92–95PubMedCrossRefGoogle Scholar
  50. 50.
    Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV et al (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106(15):1913–1918PubMedCrossRefGoogle Scholar
  51. 51.
    Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3(6):422–433PubMedCrossRefGoogle Scholar
  52. 52.
    Annabi B, Lee YT, Turcotte S, Naud E, Desrosiers RR, Champagne M et al (2003) Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. Stem Cells 21(3):337–347PubMedCrossRefGoogle Scholar
  53. 53.
    Stetler-Stevenson WG (1999) Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 103(9):1237–1241PubMedCrossRefGoogle Scholar
  54. 54.
    Worley JR, Thompkins PB, Lee MH, Hutton M, Soloway P, Edwards DR et al (2003) Sequence motifs of tissue inhibitor of metalloproteinases 2 (TIMP-2) determining progelatinase A (proMMP-2) binding and activation by membrane-type metalloproteinase 1 (MT1-MMP). Biochem J 372(Pt 3):799–809PubMedCrossRefGoogle Scholar
  55. 55.
    Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103(3):481–490PubMedCrossRefGoogle Scholar
  56. 56.
    Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P (2007) MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109(9):4055–4063PubMedCrossRefGoogle Scholar
  57. 57.
    De Becker A, Van Hummelen P, Bakkus M, Vande Broek I, De Wever J, De Waele M et al (2007) Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica 92(4):440–449PubMedCrossRefGoogle Scholar
  58. 58.
    Matrisian LM, Sledge GW Jr, Mohla S (2003) Extracellular proteolysis and cancer: meeting summary and future directions. Cancer Res 63(19):6105–6109PubMedGoogle Scholar
  59. 59.
    Chiu RC, Zibaitis A, Kao RL (1995) Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg 60(1):12–18PubMedGoogle Scholar
  60. 60.
    Philp D, Chen SS, Fitzgerald W, Orenstein J, Margolis L, Kleinman HK (2005) Complex extracellular matrices promote tissue-specific stem cell differentiation. Stem Cells 23(2):288–296PubMedCrossRefGoogle Scholar
  61. 61.
    Salasznyk RM, Williams WA, Boskey A, Batorsky A, Plopper GE (2004) Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. J Biomed Biotechnol 2004(1):24–34PubMedCrossRefGoogle Scholar
  62. 62.
    Mizuno M, Fujisawa R, Kuboki Y (2000) Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J Cell Physiol 184(2):207–213PubMedCrossRefGoogle Scholar
  63. 63.
    Nguyen H, Qian JJ, Bhatnagar RS, Li S (2003) Enhanced cell attachment and osteoblastic activity by P-15 peptide-coated matrix in hydrogels. Biochem Biophys Res Commun 311(1):179–186PubMedCrossRefGoogle Scholar
  64. 64.
    Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T (2006) Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng 93(6):1152–1163PubMedCrossRefGoogle Scholar
  65. 65.
    Mizuno M, Shindo M, Kobayashi D, Tsuruga E, Amemiya A, Kuboki Y (1997) Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone 20(2):101–107PubMedCrossRefGoogle Scholar
  66. 66.
    Bradham DM, Passaniti A, Horton WE Jr (1995) Mesenchymal cell chondrogenesis is stimulated by basement membrane matrix and inhibited by age-associated factors. Matrix Biol 14(7):561–571PubMedCrossRefGoogle Scholar
  67. 67.
    Lozito TP, Taboas JM, Kuo CK, Tuan RS (2009) Mesenchymal stem cell modification of endothelial matrix regulates their vascular differentiation. J Cell Biochem 107(4):706–713PubMedCrossRefGoogle Scholar
  68. 68.
    Lozito TP, Kuo CK, Taboas JM, Tuan RS (2009) Human mesenchymal stem cells express vascular cell phenotypes upon interaction with endothelial cell matrix. J Cell Biochem 107(4):714–722PubMedCrossRefGoogle Scholar
  69. 69.
    Heng BC, Cao T, Stanton LW, Robson P, Olsen B (2004) Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J Bone Miner Res 19(9):1379–1394PubMedCrossRefGoogle Scholar
  70. 70.
    Matsubara T, Tsutsumi S, Pan H, Hiraoka H, Oda R, Nishimura M et al (2004) A new technique to expand human mesenchymal stem cells using basement membrane extracellular matrix. Biochem Biophys Res Commun 313(3):503–508PubMedCrossRefGoogle Scholar
  71. 71.
    Qian L, Saltzman WM (2004) Improving the expansion and neuronal differentiation of ­mesenchymal stem cells through culture surface modification. Biomaterials 25(7–8):1331–1337PubMedCrossRefGoogle Scholar
  72. 72.
    Hashimoto J, Kariya Y, Miyazaki K (2006) Regulation of proliferation and chondrogenic differentiation of human mesenchymal stem cells by laminin-5 (laminin-332). Stem Cells 24(11):2346–2354PubMedCrossRefGoogle Scholar
  73. 73.
    Klees RF, Salasznyk RM, Vandenberg S, Bennett K, Plopper GE (2007) Laminin-5 activates extracellular matrix production and osteogenic gene focusing in human mesenchymal stem cells. Matrix Biol 26(2):106–114PubMedCrossRefGoogle Scholar
  74. 74.
    Klees RF, Salasznyk RM, Kingsley K, Williams WA, Boskey A, Plopper GE (2005) Laminin-5 induces osteogenic gene expression in human mesenchymal stem cells through an ERK-dependent pathway. Mol Biol Cell 16(2):881–890PubMedCrossRefGoogle Scholar
  75. 75.
    Salasznyk RM, Klees RF, Boskey A, Plopper GE (2007) Activation of FAK is necessary for the osteogenic differentiation of human mesenchymal stem cells on laminin-5. J Cell Biochem 100(2):499–514PubMedCrossRefGoogle Scholar
  76. 76.
    Shin V, Zebboudj AF, Bostrom K (2004) Endothelial cells modulate osteogenesis in calcifying vascular cells. J Vasc Res 41(2):193–201PubMedCrossRefGoogle Scholar
  77. 77.
    Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85(3):979–1000PubMedCrossRefGoogle Scholar
  78. 78.
    Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277(5323):225–228PubMedCrossRefGoogle Scholar
  79. 79.
    Schenk S, Quaranta V (2003) Tales from the crypt[ic] sites of the extracellular matrix. Trends Cell Biol 13(7):366–375PubMedCrossRefGoogle Scholar
  80. 80.
    Rodenberg EJ, Pavalko FM (2007) Peptides derived from fibronectin type III connecting segments promote endothelial cell adhesion but not platelet adhesion: implications in tissue-engineered vascular grafts. Tissue Eng 13(11):2653–2666PubMedCrossRefGoogle Scholar
  81. 81.
    Xu J, Rodriguez D, Petitclerc E, Kim JJ, Hangai M, Moon YS et al (2001) Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 154(5):1069–1079PubMedCrossRefGoogle Scholar
  82. 82.
    Amano S, Scott IC, Takahara K, Koch M, Champliaud MF, Gerecke DR et al (2000) Bone morphogenetic protein 1 is an extracellular processing enzyme of the laminin 5 gamma 2 chain. J Biol Chem 275(30):22728–22735PubMedCrossRefGoogle Scholar
  83. 83.
    Fukai F, Iso T, Sekiguchi K, Miyatake N, Tsugita A, Katayama T (1993) An amino-terminal fibronectin fragment stimulates the differentiation of ST-13 preadipocytes. Biochemistry 32(22):5746–5751PubMedCrossRefGoogle Scholar
  84. 84.
    Limper AH, Quade BJ, LaChance RM, Birkenmeier TM, Rangwala TS, McDonald JA (1991) Cell surface molecules that bind fibronectin’s matrix assembly domain. J Biol Chem 266(15):9697–9702PubMedGoogle Scholar
  85. 85.
    Ambesi A, Klein RM, Pumiglia KM, McKeown-Longo PJ (2005) Anastellin, a fragment of the first type III repeat of fibronectin, inhibits extracellular signal-regulated kinase and causes G(1) arrest in human microvessel endothelial cells. Cancer Res 65(1):148–156PubMedGoogle Scholar
  86. 86.
    Marneros AG, Olsen BR (2001) The role of collagen-derived proteolytic fragments in angiogenesis. Matrix Biol 20(5–6):337–345PubMedCrossRefGoogle Scholar
  87. 87.
    Ferreras M, Felbor U, Lenhard T, Olsen BR, Delaisse J (2000) Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett 486(3):247–251PubMedCrossRefGoogle Scholar
  88. 88.
    Ramchandran R, Dhanabal M, Volk R, Waterman MJ, Segal M, Lu H et al (1999) Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin. Biochem Biophys Res Commun 255(3):735–739PubMedCrossRefGoogle Scholar
  89. 89.
    Mongiat M, Sweeney SM, San Antonio JD, Fu J, Iozzo RV (2003) Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J Biol Chem 278(6):4238–4249PubMedCrossRefGoogle Scholar
  90. 90.
    Gonzalez EM, Reed CC, Bix G, Fu J, Zhang Y, Gopalakrishnan B et al (2005) BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan. J Biol Chem 280(8):7080–7087PubMedCrossRefGoogle Scholar
  91. 91.
    Colorado PC, Torre A, Kamphaus G, Maeshima Y, Hopfer H, Takahashi K et al (2000) Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 60(9):2520–2526PubMedGoogle Scholar
  92. 92.
    Magnon C, Galaup A, Mullan B, Rouffiac V, Bouquet C, Bidart JM et al (2005) Canstatin acts on endothelial and tumor cells via mitochondrial damage initiated through interaction with alphavbeta3 and alphavbeta5 integrins. Cancer Res 65(10):4353–4361PubMedCrossRefGoogle Scholar
  93. 93.
    Annes JP, Munger JS, Rifkin DB (2003) Making sense of latent TGFbeta activation. J Cell Sci 116(Pt 2):217–224PubMedCrossRefGoogle Scholar
  94. 94.
    Yamaguchi Y, Mann DM, Ruoslahti E (1990) Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 346(6281):281–284PubMedCrossRefGoogle Scholar
  95. 95.
    Miura M, Chen XD, Allen MR, Bi Y, Gronthos S, Seo BM et al (2004) A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest 114(12):1704–1713PubMedGoogle Scholar
  96. 96.
    Zhu Y, Oganesian A, Keene DR, Sandell LJ (1999) Type IIA procollagen containing the cysteine-rich amino propeptide is deposited in the extracellular matrix of prechondrogenic tissue and binds to TGF-beta1 and BMP-2. J Cell Biol 144(5):1069–1080PubMedCrossRefGoogle Scholar
  97. 97.
    Jones JI, Gockerman A, Busby WH Jr, Camacho-Hubner C, Clemmons DR (1993) Extracellular matrix contains insulin-like growth factor binding protein-5: potentiation of the effects of IGF-I. J Cell Biol 121(3):679–687PubMedCrossRefGoogle Scholar
  98. 98.
    Firth SM, Baxter RC (2002) Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 23(6):824–854PubMedCrossRefGoogle Scholar
  99. 99.
    Aviezer D, Hecht D, Safran M, Eisinger M, David G, Yayon A (1994) Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 79(6):1005–1013PubMedCrossRefGoogle Scholar
  100. 100.
    Paralkar VM, Vukicevic S, Reddi AH (1991) Transforming growth factor beta type 1 binds to collagen IV of basement membrane matrix: implications for development. Dev Biol 143(2):303–308PubMedCrossRefGoogle Scholar
  101. 101.
    Paralkar VM, Nandedkar AK, Pointer RH, Kleinman HK, Reddi AH (1990) Interaction of osteogenin, a heparin binding bone morphogenetic protein, with type IV collagen. J Biol Chem 265(28):17281–17284PubMedGoogle Scholar
  102. 102.
    Paralkar VM, Weeks BS, Yu YM, Kleinman HK, Reddi AH (1992) Recombinant human bone morphogenetic protein 2B stimulates PC12 cell differentiation: potentiation and binding to type IV collagen. J Cell Biol 119(6):1721–1728PubMedCrossRefGoogle Scholar
  103. 103.
    Kasper G, Glaeser JD, Geissler S, Ode A, Tuischer J, Matziolis G et al (2007) Matrix metalloprotease activity is an essential link between mechanical stimulus and mesenchymal stem cell behavior. Stem Cells 25(8):1985–1994PubMedCrossRefGoogle Scholar
  104. 104.
    Briknarova K, Akerman ME, Hoyt DW, Ruoslahti E, Ely KR (2003) Anastellin, an FN3 fragment with fibronectin polymerization activity, resembles amyloid fibril precursors. J Mol Biol 332(1):205–215PubMedCrossRefGoogle Scholar
  105. 105.
    Lozito TP, Tuan RS (2011) Mesenchymal stem cells inhibit both endogenous and exogenous MMPs via secreted TIMPs. J Cell Physiol 226:385–396PubMedCrossRefGoogle Scholar
  106. 106.
    Ray JM, Stetler-Stevenson WG (1994) The role of matrix metalloproteases and their inhibitors in tumour invasion, metastasis and angiogenesis. Eur Respir J 7(11):2062–2072PubMedGoogle Scholar
  107. 107.
    Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92(8):827–839PubMedCrossRefGoogle Scholar
  108. 108.
    Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477(1–2):267–283PubMedCrossRefGoogle Scholar
  109. 109.
    Bigg HF, Morrison CJ, Butler GS, Bogoyevitch MA, Wang Z, Soloway PD et al (2001) Tissue inhibitor of metalloproteinases-4 inhibits but does not support the activation of gelatinase A via efficient inhibition of membrane type 1-matrix metalloproteinase. Cancer Res 61(9):3610–3618PubMedGoogle Scholar
  110. 110.
    Emmert-Buck MR, Emonard HP, Corcoran ML, Krutzsch HC, Foidart JM, Stetler-Stevenson WG (1995) Cell surface binding of TIMP-2 and pro-MMP-2/TIMP-2 complex. FEBS Lett 364(1):28–32PubMedCrossRefGoogle Scholar
  111. 111.
    Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30(1):42–48PubMedCrossRefGoogle Scholar
  112. 112.
    Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843PubMedCrossRefGoogle Scholar
  113. 113.
    Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R et al (2005) Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 35(5):1482–1490PubMedCrossRefGoogle Scholar
  114. 114.
    Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L et al (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+ CD25highFOXP3+ regulatory T cells. Stem Cells 26(1):212–222PubMedCrossRefGoogle Scholar
  115. 115.
    Chabannes D, Hill M, Merieau E, Rossignol J, Brion R, Soulillou JP et al (2007) A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood 110(10):3691–3694PubMedCrossRefGoogle Scholar
  116. 116.
    Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103(12):4619–4621PubMedCrossRefGoogle Scholar
  117. 117.
    Morandi F, Raffaghello L, Bianchi G, Meloni F, Salis A, Millo E et al (2008) Immunogenicity of human mesenchymal stem cells in HLA-class I-restricted T-cell responses against viral or tumor-associated antigens. Stem Cells 26(5):1275–1287PubMedCrossRefGoogle Scholar
  118. 118.
    Ding Y, Xu D, Feng G, Bushell A, Muschel RJ, Wood KJ (2009) Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes 58(8):1797–1806PubMedCrossRefGoogle Scholar
  119. 119.
    Benvenuto F, Ferrari S, Gerdoni E, Gualandi F, Frassoni F, Pistoia V et al (2007) Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells 25(7):1753–1760PubMedCrossRefGoogle Scholar
  120. 120.
    Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI et al (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2(2):141–150PubMedCrossRefGoogle Scholar
  121. 121.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822PubMedCrossRefGoogle Scholar
  122. 122.
    Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A et al (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24(2):386–398PubMedCrossRefGoogle Scholar
  123. 123.
    Rasmusson I, Ringden O, Sundberg B, Le Blanc K (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76(8):1208–1213PubMedCrossRefGoogle Scholar
  124. 124.
    Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD et al (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105(10):4120–4126PubMedCrossRefGoogle Scholar
  125. 125.
    Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE (2006) Mesenchymal stem cells inhibit generation and function of both CD34+−derived and monocyte-derived dendritic cells. J Immunol 177(4):2080–2087PubMedGoogle Scholar
  126. 126.
    Li YP, Paczesny S, Lauret E, Poirault S, Bordigoni P, Mekhloufi F et al (2008) Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway. J Immunol 180(3):1598–1608PubMedGoogle Scholar
  127. 127.
    Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H et al (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105(5):2214–2219PubMedCrossRefGoogle Scholar
  128. 128.
    Maccario R, Podesta M, Moretta A, Cometa A, Comoli P, Montagna D et al (2005) Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 90(4):516–525PubMedGoogle Scholar
  129. 129.
    Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F et al (2007) Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25(8):2025–2032PubMedCrossRefGoogle Scholar
  130. 130.
    Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107(4):1484–1490PubMedCrossRefGoogle Scholar
  131. 131.
    Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105(7):2821–2827PubMedCrossRefGoogle Scholar
  132. 132.
    Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107(1):367–372PubMedCrossRefGoogle Scholar
  133. 133.
    Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E et al (2007) Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol 61(3):219–227PubMedCrossRefGoogle Scholar
  134. 134.
    Ryan JM, Barry F, Murphy JM, Mahon BP (2007) Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 149(2):353–363PubMedCrossRefGoogle Scholar
  135. 135.
    Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111(3):1327–1333PubMedCrossRefGoogle Scholar
  136. 136.
    Stagg J, Pommey S, Eliopoulos N, Galipeau J (2006) Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 107(6):2570–2577PubMedCrossRefGoogle Scholar
  137. 137.
    Chan JL, Tang KC, Patel AP, Bonilla LM, Pierobon N, Ponzio NM et al (2006) Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood 107(12):4817–4824PubMedCrossRefGoogle Scholar
  138. 138.
    Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24(1):74–85PubMedCrossRefGoogle Scholar
  139. 139.
    Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F et al (2008) Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 26(1):151–162PubMedCrossRefGoogle Scholar
  140. 140.
    Traggiai E, Volpi S, Schena F, Gattorno M, Ferlito F, Moretta L et al (2008) Bone ­marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells 26(2):562–569PubMedCrossRefGoogle Scholar
  141. 141.
    Rasmusson I, Le Blanc K, Sundberg B, Ringden O (2007) Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand J Immunol 65(4):336–343PubMedCrossRefGoogle Scholar
  142. 142.
    Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR (2008) Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am J Physiol Cell Physiol 294(3):C675–C682PubMedCrossRefGoogle Scholar
  143. 143.
    Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563PubMedCrossRefGoogle Scholar
  144. 144.
    Djouad F, Bony C, Apparailly F, Louis-Plence P, Jorgensen C, Noel D (2006) Earlier onset of syngeneic tumors in the presence of mesenchymal stem cells. Transplantation 82(8):1060–1066PubMedCrossRefGoogle Scholar
  145. 145.
    Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II et al (2006) Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 203(5):1235–1247PubMedCrossRefGoogle Scholar
  146. 146.
    Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B et al (2009) Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 4(4):e4992PubMedCrossRefGoogle Scholar
  147. 147.
    Hata N, Shinojima N, Gumin J, Yong R, Marini F, Andreeff M et al (2010) Platelet-derived growth factor BB mediates the tropism of human mesenchymal stem cells for malignant gliomas. Neurosurgery 66(1):144–156, discussion 56–7PubMedCrossRefGoogle Scholar
  148. 148.
    Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM et al (2007) Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 13(17):5020–5027PubMedCrossRefGoogle Scholar
  149. 149.
    Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL et al (2009) The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci USA 106(10):3806–3811PubMedCrossRefGoogle Scholar
  150. 150.
    Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15(10):730–738PubMedCrossRefGoogle Scholar
  151. 151.
    Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736PubMedCrossRefGoogle Scholar
  152. 152.
    Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252PubMedCrossRefGoogle Scholar
  153. 153.
    Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659PubMedCrossRefGoogle Scholar
  154. 154.
    Kuhn NZ, Tuan RS (2010) Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J Cell Physiol 222(2):268–277PubMedCrossRefGoogle Scholar
  155. 155.
    Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62(13):3603–3608PubMedGoogle Scholar
  156. 156.
    Lazennec G, Jorgensen C (2008) Concise review: adult multipotent stromal cells and cancer: risk or benefit? Stem Cells 26(6):1387–1394PubMedCrossRefGoogle Scholar
  157. 157.
    Ikenaka Y, Yoshiji H, Kuriyama S, Yoshii J, Noguchi R, Tsujinoue H et al (2003) Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibits tumor growth and angiogenesis in the TIMP-1 transgenic mouse model. Int J Cancer 105(3):340–346PubMedCrossRefGoogle Scholar
  158. 158.
    Seo DW, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R et al (2003) TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell 114(2):171–180PubMedCrossRefGoogle Scholar
  159. 159.
    Hoegy SE, Oh HR, Corcoran ML, Stetler-Stevenson WG (2001) Tissue inhibitor of ­metalloproteinases-2 (TIMP-2) suppresses TKR-growth factor signaling independent of metalloproteinase inhibition. J Biol Chem 276(5):3203–3214PubMedCrossRefGoogle Scholar
  160. 160.
    Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M et al (2003) A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 9(4):407–415PubMedCrossRefGoogle Scholar
  161. 161.
    Anand-Apte B, Pepper MS, Voest E, Montesano R, Olsen B, Murphy G et al (1997) Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Invest Ophthalmol Vis Sci 38(5):817–823PubMedGoogle Scholar
  162. 162.
    Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ (2010) Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 190(6):1079–1091PubMedCrossRefGoogle Scholar
  163. 163.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659PubMedCrossRefGoogle Scholar
  164. 164.
    Lozito TP, Tuan RS (2012) Endothelial cell microparticles act as centers of matrix metalloproteinsase-2 (MMP-2) activation and vascular matrix remodeling. J Cell Physiol 227:534–549PubMedCrossRefGoogle Scholar
  165. 165.
    Lacroix R, Sabatier F, Mialhe A, Basire A, Pannell R, Borghi H et al (2007) Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro. Blood 110(7):2432–2439PubMedCrossRefGoogle Scholar
  166. 166.
    Dolo V, Ginestra A, Ghersi G, Nagase H, Vittorelli ML (1994) Human breast carcinoma cells cultured in the presence of serum shed membrane vesicles rich in gelatinolytic activities. J Submicrosc Cytol Pathol 26(2):173–180PubMedGoogle Scholar
  167. 167.
    Taraboletti G, D’Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V (2002) Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol 160(2):673–680PubMedCrossRefGoogle Scholar
  168. 168.
    Distler JH, Jungel A, Huber LC, Seemayer CA, Reich CF 3rd, Gay RE et al (2005) The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc Natl Acad Sci USA 102(8):2892–2897PubMedCrossRefGoogle Scholar
  169. 169.
    Mbalaviele G, Dunstan CR, Sasaki A, Williams PJ, Mundy GR, Yoneda T (1996) E-cadherin expression in human breast cancer cells suppresses the development of osteolytic bone metastases in an experimental metastasis model. Cancer Res 56(17):4063–4070PubMedGoogle Scholar
  170. 170.
    Noe V, Fingleton B, Jacobs K, Crawford HC, Vermeulen S, Steelant W et al (2001) Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114(Pt 1):111–118PubMedGoogle Scholar
  171. 171.
    Diamant M, Tushuizen ME, Sturk A, Nieuwland R (2004) Cellular microparticles: new players in the field of vascular disease? Eur J Clin Invest 34(6):392–401PubMedCrossRefGoogle Scholar
  172. 172.
    Whiteside TL (2005) Tumour-derived exosomes or microvesicles: another mechanism of tumour escape from the host immune system? Br J Cancer 92(2):209–211PubMedCrossRefGoogle Scholar
  173. 173.
    Raposo G, Tenza D, Mecheri S, Peronet R, Bonnerot C, Desaymard C (1997) Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell 8(12):2631–2645PubMedGoogle Scholar
  174. 174.
    Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G et al (2002) TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol 168(7):3235–3241PubMedGoogle Scholar
  175. 175.
    Thery C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P et al (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 147(3):599–610PubMedCrossRefGoogle Scholar
  176. 176.
    Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33(3):967–978PubMedCrossRefGoogle Scholar
  177. 177.
    Distler JH, Pisetsky DS, Huber LC, Kalden JR, Gay S, Distler O (2005) Microparticles as regulators of inflammation: novel players of cellular crosstalk in the rheumatic diseases. Arthritis Rheum 52(11):3337–3348PubMedCrossRefGoogle Scholar
  178. 178.
    Gasser O, Hess C, Miot S, Deon C, Sanchez JC, Schifferli JA (2003) Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp Cell Res 285(2):243–257PubMedCrossRefGoogle Scholar
  179. 179.
    Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172PubMedCrossRefGoogle Scholar
  180. 180.
    Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579PubMedGoogle Scholar
  181. 181.
    Stein JM, Luzio JP (1991) Ectocytosis caused by sublytic autologous complement attack on human neutrophils. The sorting of endogenous plasma-membrane proteins and lipids into shed vesicles. Biochem J 274(Pt 2):381–386PubMedGoogle Scholar
  182. 182.
    Lakkaraju A, Rodriguez-Boulan E (2008) Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol 18(5):199–209PubMedCrossRefGoogle Scholar
  183. 183.
    Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol; Chapter 3: Unit 3. 22 pages 1–29.Google Scholar
  184. 184.
    Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9(6):871–881PubMedCrossRefGoogle Scholar
  185. 185.
    Cline AM, Radic MZ (2004) Apoptosis, subcellular particles, and autoimmunity. Clin Immunol 112(2):175–182PubMedCrossRefGoogle Scholar
  186. 186.
    Hristov M, Erl W, Linder S, Weber PC (2004) Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 104(9):2761–2766PubMedCrossRefGoogle Scholar
  187. 187.
    Cho HH, Kim YJ, Kim SJ, Kim JH, Bae YC, Ba B et al (2006) Endogenous Wnt signaling promotes proliferation and suppresses osteogenic differentiation in human adipose derived stromal cells. Tissue Eng 12(1):111–121PubMedCrossRefGoogle Scholar
  188. 188.
    Boland GM, Perkins G, Hall DJ, Tuan RS (2004) Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem 93(6):1210–1230PubMedCrossRefGoogle Scholar
  189. 189.
    Baksh D, Boland GM, Tuan RS (2007) Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. J Cell Biochem 101(5):1109–1124PubMedCrossRefGoogle Scholar
  190. 190.
    Baksh D, Tuan RS (2007) Canonical and non-canonical Wnts differentially affect the development potential of primary isolate of human bone marrow mesenchymal stem cells. J Cell Physiol 212(3):817–826PubMedCrossRefGoogle Scholar
  191. 191.
    Ikeya M, Takada S (1998) Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome. Development 125(24):4969–4976PubMedGoogle Scholar
  192. 192.
    Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD et al (2005) Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA 102(9):3324–3329PubMedCrossRefGoogle Scholar
  193. 193.
    Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS et al (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280(39):33132–33140PubMedCrossRefGoogle Scholar
  194. 194.
    Ling L, Nurcombe V, Cool SM (2009) Wnt signaling controls the fate of mesenchymal stem cells. Gene 433(1–2):1–7PubMedCrossRefGoogle Scholar
  195. 195.
    Fischer L, Boland G, Tuan RS (2002) Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells. J Biol Chem 277(34):30870–30878PubMedCrossRefGoogle Scholar
  196. 196.
    Fischer L, Boland G, Tuan RS (2002) Wnt signaling during BMP-2 stimulation of mesenchymal chondrogenesis. J Cell Biochem 84(4):816–831PubMedCrossRefGoogle Scholar
  197. 197.
    Tufan AC, Daumer KM, Tuan RS (2002) Frizzled-7 and limb mesenchymal chondrogenesis: effect of misexpression and involvement of N-cadherin. Dev Dyn 223(2):241–253PubMedCrossRefGoogle Scholar
  198. 198.
    Tuli R, Tuli S, Nandi S, Huang X, Manner PA, Hozack WJ et al (2003) Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem 278(42):41227–41236PubMedCrossRefGoogle Scholar
  199. 199.
    Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11):3791–3799PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Orthopaedic Surgery, Center for Cellular and Molecular EngineeringUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations