Skip to main content

Mesenchymal Stromal Cells in Regenerative Medicine: A Perspective

  • Chapter
  • First Online:
Mesenchymal Stromal Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Multipotent mesenchymal stromal cells (MSCs) of bone marrow origin not only provide a supportive cellular niche for hematopoiesis inside the bone marrow but also differentiate into mesodermal cells such as bone, fat, and cartilage. Clinical uses of culture-expanded MSCs were originally investigated for their presumed hematopoietic-supportive activities. Their use in the clinic was later expanded to the treatment of steroid-resistant acute graft-versus-host disease based on unique immunomodulatory properties shown in a variety of in vitro experiments and in vivo models. Systemically administered MSCs participate in tissue regeneration through diverse biological activities, including paracrine effects that are not necessarily dependent on cell engraftment. Although there is an impressive record of safety in clinical trials, most outcomes have been assessed in the short term, and their efficacy has yet to be shown conclusively in randomized controlled trials. Forty years after their original description and 20 years after their use in humans, culture-expanded MSCs, and particularly their in vivo counterparts, remain poorly understood. However, unless or until better therapeutic options for debilitating disorders are found, the notion that MSCs could be potentially useful warrants further investigation to establish long-term safety and efficacy in well-designed clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247

    PubMed  CAS  Google Scholar 

  2. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650

    PubMed  CAS  Google Scholar 

  3. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    PubMed  CAS  Google Scholar 

  4. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846

    PubMed  CAS  Google Scholar 

  5. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841

    PubMed  CAS  Google Scholar 

  6. Dexter TM (1982) Stromal cell associated haemopoiesis. J Cell Physiol 1:87–94

    CAS  Google Scholar 

  7. Tavassoli M, Friedenstein A (1983) Hemopoietic stromal microenvironment. Am J Hematol 15(2):195–203

    PubMed  CAS  Google Scholar 

  8. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228

    PubMed  CAS  Google Scholar 

  9. Williams JT, Southerland SS, Souza J, Calcutt AF, Cartledge RG (1999) Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 65(1):22–26

    PubMed  CAS  Google Scholar 

  10. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44(8):1928–1942

    PubMed  Google Scholar 

  11. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97(25):13625–13630

    PubMed  CAS  Google Scholar 

  12. In ’t Anker PS PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22(7):1338–1345

    Google Scholar 

  13. In ’t Anker PS, Scherjon SA, Keur C, Noort WA, Claas FH, Willemze R et al (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102(4):1548–1549

    Google Scholar 

  14. Bieback K, Kern S, Kluter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22(4):625–634

    PubMed  Google Scholar 

  15. In ’t Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL et al (2003) Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 88(8):845–852

    Google Scholar 

  16. Hoogduijn MJ, Crop MJ, Peeters AM, Van Osch GJ, Balk AH, Ijzermans JN et al (2007) Human heart, spleen, and perirenal fat-derived mesenchymal stem cells have immunomodulatory capacities. Stem Cells Dev 16(4):597–604

    PubMed  CAS  Google Scholar 

  17. Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C et al (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129(1):118–129

    PubMed  Google Scholar 

  18. Gotherstrom C, Ringden O, Westgren M, Tammik C, Le Blanc K (2003) Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant 32(3):265–272

    PubMed  CAS  Google Scholar 

  19. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103(5):697–705

    PubMed  CAS  Google Scholar 

  20. Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M et al (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22(3):377–384

    PubMed  Google Scholar 

  21. Wang G, Bunnell BA, Painter RG, Quiniones BC, Tom S, Lanson NA Jr et al (2005) Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis. Proc Natl Acad Sci USA 102(1):186–191

    PubMed  CAS  Google Scholar 

  22. Sato Y, Araki H, Kato J, Nakamura K, Kawano Y, Kobune M et al (2005) Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood 106(2):756–763

    PubMed  CAS  Google Scholar 

  23. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4):364–370

    PubMed  CAS  Google Scholar 

  24. Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA et al (2004) In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53(7):1721–1732

    PubMed  CAS  Google Scholar 

  25. Keating A (2006) Mesenchymal stromal cells. Curr Opin Hematol 13(6):419–425

    PubMed  Google Scholar 

  26. Prockop DJ (2007) “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther 82(3):241–243

    PubMed  CAS  Google Scholar 

  27. Lu P, Blesch A, Tuszynski MH (2004) Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res 77(2):174–191

    PubMed  CAS  Google Scholar 

  28. Devine SM, Bartholomew AM, Mahmud N, Nelson M, Patil S, Hardy W et al (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 29(2):244–255

    PubMed  CAS  Google Scholar 

  29. Wynn RF, Hart CA, Corradi-Perini C, O’Neill L, Evans CA, Wraith JE et al (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104(9):2643–2645

    PubMed  CAS  Google Scholar 

  30. Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169(1):12–20

    PubMed  CAS  Google Scholar 

  31. Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 101(8):2999–3001

    PubMed  CAS  Google Scholar 

  32. Shi M, Li J, Liao L, Chen B, Li B, Chen L et al (2007) Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica 92(7):897–904

    PubMed  Google Scholar 

  33. Dar A, Kollet O, Lapidot T (2006) Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol 34(8):967–975

    PubMed  CAS  Google Scholar 

  34. Uccelli A, Pistoia V, Moretta L (2007) Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol 28(5):219–226

    PubMed  CAS  Google Scholar 

  35. Le Blanc K, Ringden O (2005) Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 11(5):321–334

    PubMed  Google Scholar 

  36. Prockop DJ, Olson SD (2007) Clinical trials with adult stem/progenitor cells for tissue repair: let’s not overlook some essential precautions. Blood 109(8):3147–3151

    PubMed  CAS  Google Scholar 

  37. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL et al (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5(1):54–63

    PubMed  CAS  Google Scholar 

  38. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI (1995) Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 16(4):557–564

    PubMed  CAS  Google Scholar 

  39. Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI et al (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18(2):307–316

    PubMed  CAS  Google Scholar 

  40. Lazarus HM, Koc ON, Devine SM, Curtin P, Maziarz RT, Holland HK et al (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 11(5):389–398

    PubMed  Google Scholar 

  41. Fouillard L, Bensidhoum M, Bories D, Bonte H, Lopez M, Moseley AM et al (2003) Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma. Leukemia 17(2):474–476

    PubMed  CAS  Google Scholar 

  42. Fouillard L, Chapel A, Bories D, Bouchet S, Costa JM, Rouard H et al (2007) Infusion of allogeneic-related HLA mismatched mesenchymal stem cells for the treatment of incomplete engraftment following autologous haematopoietic stem cell transplantation. Leukemia 21(3):568–570

    PubMed  CAS  Google Scholar 

  43. Le Blanc K, Samuelsson H, Gustafsson B, Remberger M, Sundberg B, Arvidson J et al (2007) Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 21(8):1733–1738

    PubMed  Google Scholar 

  44. Ball LM, Bernardo ME, Roelofs H, Lankester A, Cometa A, Egeler RM et al (2007) Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood 110(7):2764–2767

    PubMed  CAS  Google Scholar 

  45. Meuleman N, Tondreau T, Ahmad I, Kwan J, Crokaert F, Delforge A et al (2009) Infusion of mesenchymal stromal cells can aid hematopoietic recovery following allogeneic hematopoietic stem cell myeloablative transplant: a pilot study. Stem Cells Dev 18(9):1247–1252

    PubMed  Google Scholar 

  46. Koc ON, Peters C, Aubourg P, Raghavan S, Dyhouse S, DeGasperi R et al (1999) Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 27(11):1675–1681

    PubMed  CAS  Google Scholar 

  47. Rieger K, Marinets O, Fietz T, Korper S, Sommer D, Mucke C et al (2005) Mesenchymal stem cells remain of host origin even a long time after allogeneic peripheral blood stem cell or bone marrow transplantation. Exp Hematol 33(5):605–611

    PubMed  CAS  Google Scholar 

  48. Awaya N, Rupert K, Bryant E, Torok-Storb B (2002) Failure of adult marrow-derived stem cells to generate marrow stroma after successful hematopoietic stem cell transplantation. Exp Hematol 30(8):937–942

    PubMed  Google Scholar 

  49. Devine SM, Hoffman R (2000) Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Curr Opin Hematol 7(6):358–363

    PubMed  CAS  Google Scholar 

  50. Koc ON, Lazarus HM (2001) Mesenchymal stem cells: heading into the clinic. Bone Marrow Transplant 27(3):235–239

    PubMed  CAS  Google Scholar 

  51. Barrett AJ, Le Blanc K (2008) Prophylaxis of acute GVHD: manipulate the graft or the environment? Best Pract Res Clin Haematol 21(2):165–176

    PubMed  CAS  Google Scholar 

  52. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(9419):1439–1441

    PubMed  Google Scholar 

  53. Ringden O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lonnies H et al (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81(10):1390–1397

    PubMed  Google Scholar 

  54. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579–1586

    PubMed  Google Scholar 

  55. Battiwalla M, Hematti P (2009) Mesenchymal stem cells in hematopoietic stem cell transplantation. Cytotherapy 11(5):503–515

    PubMed  Google Scholar 

  56. Prasad VK, Lucas KG, Kleiner GI, Talano JA, Jacobsohn D, Broadwater G et al (2011) Efficacy and safety of ex-vivo cultured adult human mesenchymal stem cells (prochymal (TM)) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant 17(4):534–541

    PubMed  CAS  Google Scholar 

  57. Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30(4):215–222

    PubMed  CAS  Google Scholar 

  58. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5(3):309–313

    PubMed  CAS  Google Scholar 

  59. Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94(1):92–95

    PubMed  Google Scholar 

  60. Sueblinvong V, Weiss DJ (2009) Cell therapy approaches for lung diseases: current status. Curr Opin Pharmacol 9(3):268–273

    PubMed  CAS  Google Scholar 

  61. Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Boccaletti R et al (2006) Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurol Res 28(5):523–526

    PubMed  Google Scholar 

  62. Bang OY, Lee JS, Lee PH, Lee G (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57(6):874–882

    PubMed  Google Scholar 

  63. Yoshikawa T, Mitsuno H, Nonaka I, Sen Y, Kawanishi K, Inada Y et al (2008) Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg 121(3):860–877

    PubMed  CAS  Google Scholar 

  64. Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH (2008) Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57(7):1759–1767

    PubMed  CAS  Google Scholar 

  65. Christopeit M, Schendel M, Foll J, Muller LP, Keysser G, Behre G (2008) Marked improvement of severe progressive systemic sclerosis after transplantation of mesenchymal stem cells from an allogeneic haploidentical-related donor mediated by ligation of CD137L. Leukemia 22(5):1062–1064

    PubMed  CAS  Google Scholar 

  66. Tyndall A, Uccelli A (2009) Multipotent mesenchymal stromal cells for autoimmune ­diseases: teaching new dogs old tricks. Bone Marrow Transplant 43(11):821–828

    PubMed  CAS  Google Scholar 

  67. Taupin P (2006) OTI-010 Osiris therapeutics/JCR pharmaceuticals. Curr Opin Investig Drugs 7(5):473–481

    PubMed  CAS  Google Scholar 

  68. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I et al (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67(10):1187–1194

    PubMed  Google Scholar 

  69. Arima N, Nakamura F, Fukunaga A, Hirata H, Machida H, Kouno S et al (2010) Single intra-arterial injection of mesenchymal stromal cells for treatment of steroid-refractory acute graft-versus-host disease: a pilot study. Cytotherapy 12(2):265–268

    PubMed  Google Scholar 

  70. Tolar J, Le Blanc K, Keating A, Blazar BR (2010) Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells 28(8):1446–1455

    PubMed  Google Scholar 

  71. Samuelsson H, Ringden O, Lonnies H, Le Blanc K (2009) Optimizing in vitro conditions for immunomodulation and expansion of mesenchymal stromal cells. Cytotherapy 11(2):129–136

    PubMed  CAS  Google Scholar 

  72. Haack-Sorensen M, Bindslev L, Mortensen S, Friis T, Kastrup J (2007) The influence of freezing and storage on the characteristics and functions of human mesenchymal stromal cells isolated for clinical use. Cytotherapy 9(4):328–337

    PubMed  CAS  Google Scholar 

  73. Neuhuber B, Swanger SA, Howard L, Mackay A, Fischer I (2008) Effects of plating density and culture time on bone marrow stromal cell characteristics. Exp Hematol 36(9):1176–1185

    PubMed  Google Scholar 

  74. Dal Pozzo S, Urbani S, Mazzanti B, Luciani P, Deledda C, Lombardini L et al (2010) High recovery of mesenchymal progenitor cells with non-density gradient separation of human bone marrow. Cytotherapy 12(5):579–586

    PubMed  CAS  Google Scholar 

  75. Muller I, Kordowich S, Holzwarth C, Spano C, Isensee G, Staiber A et al (2006) Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy 8(5):437–444

    PubMed  CAS  Google Scholar 

  76. Lange C, Cakiroglu F, Spiess AN, Cappallo-Obermann H, Dierlamm J, Zander AR (2007) Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 213(1):18–26

    PubMed  CAS  Google Scholar 

  77. Le Blanc K, Samuelsson H, Lonnies L, Sundin M, Ringden O (2007) Generation of immunosuppressive mesenchymal stem cells in allogeneic human serum. Transplantation 84(8):1055–1059

    PubMed  Google Scholar 

  78. von Bonin M, Stolzel F, Goedecke A, Richter K, Wuschek N, Holig K et al (2009) Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant 43(3):245–251

    Google Scholar 

  79. Ning H, Yang F, Jiang M, Hu L, Feng K, Zhang J et al (2008) The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia 22(3):593–599

    PubMed  CAS  Google Scholar 

  80. Horowitz M (2008) The role of registries in facilitating clinical research in BMT: examples from the Center for International Blood and Marrow Transplant Research. Bone Marrow Transplant 42(Suppl 1):S1–S2

    PubMed  Google Scholar 

  81. Youd M, Blickarz C, Woodworth L, Touzjian T, Edling A, Tedstone J et al (2010) Allogeneic mesenchymal stem cells do not protect NZBxNZW F1 mice from developing lupus disease. Clin Exp Immunol 161(1):176–186

    PubMed  CAS  Google Scholar 

  82. Zhou K, Zhang H, Jin O, Feng X, Yao G, Hou Y et al (2008) Transplantation of human bone marrow mesenchymal stem cell ameliorates the autoimmune pathogenesis in MRL/lpr mice. Cell Mol Immunol 5(6):417–424

    PubMed  Google Scholar 

  83. Sun L, Akiyama K, Zhang H, Yamaza T, Hou Y, Zhao S et al (2009) Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 27(6):1421–1432

    PubMed  CAS  Google Scholar 

  84. Sun L, Wang D, Liang J, Zhang H, Feng X, Wang H et al (2010) Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 62(8):2467–2475

    PubMed  CAS  Google Scholar 

  85. Liang J, Zhang H, Hua B, Wang H, Lu L, Shi S et al (2010) Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Ann Rheum Dis 69(8):1423–1429

    PubMed  Google Scholar 

  86. Carrion F, Nova E, Ruiz C, Diaz F, Inostroza C, Rojo D et al (2010) Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus 19(3):317–322

    PubMed  CAS  Google Scholar 

  87. Chan JL, Tang KC, Patel AP, Bonilla LM, Pierobon N, Ponzio NM et al (2006) Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood 107(12):4817–4824

    PubMed  CAS  Google Scholar 

  88. Stagg J, Pommey S, Eliopoulos N, Galipeau J (2006) Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 107(6):2570–2577

    PubMed  CAS  Google Scholar 

  89. Sudres M, Norol F, Trenado A, Gregoire S, Charlotte F, Levacher B et al (2006) Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J Immunol 176(12):7761–7767

    PubMed  CAS  Google Scholar 

  90. Prigozhina TB, Khitrin S, Elkin G, Eizik O, Morecki S, Slavin S (2008) Mesenchymal stromal cells lose their immunosuppressive potential after allotransplantation. Exp Hematol 36(10):1370–1376

    PubMed  CAS  Google Scholar 

  91. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE (2006) Mesenchymal stem cells inhibit generation and function of both CD34+−derived and monocyte-derived dendritic cells. J Immunol 177(4):2080–2087

    PubMed  CAS  Google Scholar 

  92. Polchert D, Sobinsky J, Douglas G, Kidd M, Moadsiri A, Reina E et al (2008) IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol 38(6):1745–1755

    PubMed  CAS  Google Scholar 

  93. Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R et al (2005) Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 35(5):1482–1490

    PubMed  CAS  Google Scholar 

  94. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107(1):367–372

    PubMed  CAS  Google Scholar 

  95. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC et al (2005) Spontaneous human adult stem cell transformation. Cancer Res 65(8):3035–3039

    PubMed  CAS  Google Scholar 

  96. Wang Y, Huso DL, Harrington J, Kellner J, Jeong DK, Turney J et al (2005) Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 7(6):509–519

    PubMed  CAS  Google Scholar 

  97. Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V et al (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24(4):1095–1103

    PubMed  Google Scholar 

  98. Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S et al (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25(2):371–379

    PubMed  CAS  Google Scholar 

  99. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J et al (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102(10):3837–3844

    PubMed  CAS  Google Scholar 

  100. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563

    PubMed  CAS  Google Scholar 

  101. Prockop DJ, Keating A (2012) Relearning the lessons of genomic stability of human cells during expansion in culture: implications for clinical research. Stem Cells 30(6):1051–1052

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peiman Hematti M.D. or Armand Keating M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hematti, P., Keating, A. (2013). Mesenchymal Stromal Cells in Regenerative Medicine: A Perspective. In: Hematti, P., Keating, A. (eds) Mesenchymal Stromal Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5711-4_1

Download citation

Publish with us

Policies and ethics