Skip to main content

Abstract

In this chapter we summarize the most important notions and facts of probability theory that are necessary for an elaboration of our topic. In the present summary, we will apply the more specific mathematical concepts and facts – mainly measure theory and analysis – only to the necessary extent while, however, maintaining mathematical precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 802.11. IEEE standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements - part 11: Wireless LAN medium access control (mac) and physical layer (phy) specifications. http://ieeexplore.ieee.org/servlet/opac?punumber=4248376, 2007.

  2. N. Abramson. The aloha system: another alternative for computer communications. In: Proceedings Fall Joint Computer Conference. AFIPS Press, 1970.

    Google Scholar 

  3. D. Aldous, L. Shepp. The least variable phase type distribution is Erlang. Stoch. Models, 3:467–473, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Apostol. Calculus I. Wiley, New York, 1967.

    MATH  Google Scholar 

  5. T. Apostol. Calculus II. Wiley, New York, 1969.

    MATH  Google Scholar 

  6. J. R. Artalejo, A. Gómez-Corral. Retrial Queueing Systems: A Computational Approach. Springer, Berlin Heidelberg New York, 2008.

    Book  MATH  Google Scholar 

  7. S. Asmussen. Applied Probability and Queues. Springer, Berlin Heidelberg New York, 2003.

    MATH  Google Scholar 

  8. F. Baccelli, P. Brémaud. Elements of Queueing Theory, Applications of Mathematics. Springer, Berlin Heidelberg New York, 2002.

    Google Scholar 

  9. F. Baskett, K. Mani Chandy, R. R. Muntz, F. G. Palacios. Open, closed and mixed networks of queues with different classes of customers. J. ACM, 22:248–260, 1975.

    Article  MATH  Google Scholar 

  10. S. N. Bernstein. Theory of Probabilities. Moskva, Leningrad, 1946. (in Russian).

    Google Scholar 

  11. G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Select. Areas Commun., 18:535–547, 2000.

    Google Scholar 

  12. D. Bini, G. Latouche, B. Meini. Numerical methods for structured Markov chains. Oxford University Press, Oxford, 2005.

    Book  MATH  Google Scholar 

  13. A. Bobbio, M. Telek. A benchmark for PH estimation algorithms: results for Acyclic-PH. Stoch. Models, 10:661–677, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. A. Borovkov. Stochastic processes in queueing theory. Applications of Mathematics. Springer, Berlin Heidelberg New York, 1976.

    Book  MATH  Google Scholar 

  15. A. A. Borovkov. Asymptotic Methods in Queueing Theory. Wiley, New York, 1984.

    MATH  Google Scholar 

  16. L. Breuer, D. Baum. An Introduction to Queueing Theory and Matrix-Analytic Methods. Springer, Berlin Heidelberg New York, 2005.

    MATH  Google Scholar 

  17. P. J. Burke. The output of a queuing system. Oper. Res., 4:699–704, 1956.

    Article  MathSciNet  Google Scholar 

  18. J. Buzen. Computational algorithms for closed queueing networks with exponential servers. Commun. ACM, 16:527–531, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Ceric, L. Lakatos. Measurement and analysis of input data for queueing system models used in system design. Syst. Anal. Modell. Simul., 11:227–233, 1993.

    MATH  Google Scholar 

  20. Hong Chen, David D. Yao. Fundamentals of Queueing Networks: Performance, Asymptotics, and Optimization. Springer, Berlin Heidelberg New York, 2001.

    MATH  Google Scholar 

  21. Y. Chow, H. Teicher. Probability Theory. Springer, Berlin Heidelberg New York, 1978.

    Book  MATH  Google Scholar 

  22. K. Chung. Markov chains with stationary transition probabilities. Springer, Berlin Heidelberg New York, 1960.

    Book  MATH  Google Scholar 

  23. E. Cinlar. Introduction to Stochastic Processes. Prentice-Hall, Englewood Cliffs, NJ, 1975.

    MATH  Google Scholar 

  24. D. R. Cox. The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables. Proc. Cambridge Philos. Soc., 51:433–440, 1955.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Cumani. On the canonical representation of homogeneous Markov processes modelling failure-time distributions. Microelectron. Reliab., 22:583–602, 1982.

    Article  Google Scholar 

  26. D.J. Daley, D. Vere-Jones. An Introduction to the Theory of Point Process. Springer, Berlin Heidelberg New York, 2008. 2nd edn.

    Google Scholar 

  27. Gy. Dallos, Cs. Szabó. Random access methods of communication channels. Akadémiai Kiadó, Budapest, 1984 (in Hungarian).

    Google Scholar 

  28. M. De Prycker. Asynchronous Transfer Mode, Solutions for Broadband ISDN. Prentice Hall, Englewood Cliffs, NJ, 1993.

    Google Scholar 

  29. P. Erdős, W. Feller, H. Pollard. A theorem on power series. Bull. Am. Math. Soc., 55:201–203, 1949.

    Article  Google Scholar 

  30. G. I. Falin, J. G. C. Templeton. Retrial queues. Chapman and Hall, London, 1997.

    MATH  Google Scholar 

  31. W. Feller. An Introduction to Probability Theory and its Applications, vol. I. Wiley, New York, 1968.

    MATH  Google Scholar 

  32. Chuan Heng Foh, M. Zukerman. Performance analysis of the IEEE 802.11 MAC protocol. In Proceedings of European wireless conference, Florence, February 2002.

    Google Scholar 

  33. F. G. Foster. On the stochastic matrices associated with certain queuing processes. Ann. Math. Stat., 24:355–360, 1953.

    Article  MathSciNet  MATH  Google Scholar 

  34. G. Giambene. Queuing Theory and Telecommunications: Networks and Applications. Springer, Berlin Heidelberg New York, 2005.

    Google Scholar 

  35. I.I. Gihman, A.V. Skorohod. The Theory of Stochastic Processes, vol. I. Springer, Berlin Heidelberg New York, 1974.

    Book  MATH  Google Scholar 

  36. I. I. Gihman, A. V. Skorohod. The Theory of Stochastic Processes, vol. II. Springer, Berlin Heidelberg New York, 1975.

    Book  MATH  Google Scholar 

  37. B. Gnedenko, E. Danielyan, B. Dimitrov, G. Klimov, V. Matveev. Priority Queues. Moscow State University, Moscow, 1973 (in Russian).

    Google Scholar 

  38. B. V. Gnedenko. Theory of Probability. Gordon and Breach, Amsterdam, 1997. 6th edn.

    Google Scholar 

  39. B. V. Gnedenko, I. N. Kovalenko. Introduction to Queueing Theory, 2nd edn. Birkhauser, Boston 1989.

    Book  Google Scholar 

  40. W. J. Gordon, G. F. Newell. Closed queueing systems with exponential servers. Oper. Res., 15:254–265, 1967.

    Article  MATH  Google Scholar 

  41. D. Gross, J. F. Shortle, J. M. Thompson, C. M. Harris. Fundamentals of Queueing Theory, 4th edn. Wiley, New York, 2008.

    Google Scholar 

  42. W. Henderson. Alternative approaches to the analysis of the M/G/1 and G/M/1 queues. J. Oper. Res. Soc. Jpn., 15:92–101, 1972.

    MATH  Google Scholar 

  43. A. Horváth, M. Telek. PhFit: A general purpose phase type fitting tool. In Tools 2002, pages 82–91, London, April 2002. Lecture Notes in Computer Science, vol. 2324. Springer, Berlin Heidelberg New York.

    Google Scholar 

  44. J. R. Jackson. Jobshop-like queueing systems. Manage. Sci., 10:131–142, 1963.

    Article  Google Scholar 

  45. N. K. Jaiswal. Priority Queues. Academic, New York, 1968.

    MATH  Google Scholar 

  46. N. L. Johnson, S. Kotz. Distributions in Statistics: Continuous Multivariate Distributions. Applied Probability and Statistics. Wiley, New York, 1972.

    MATH  Google Scholar 

  47. V.V. Kalashnikov. Mathematical Methods in Queueing Theory. Kluwer, Dordrecht, 1994.

    Google Scholar 

  48. S. Karlin, H. M. Taylor. A First Course in Stochastic Processes. Academic, New York, 1975.

    MATH  Google Scholar 

  49. S. Karlin, H. M. Taylor. A Second Course in Stochastic Processes. Academic, New York, 1981.

    MATH  Google Scholar 

  50. J. Kaufman. Blocking in a shared resource environment. IEEE Trans. Commun., 29: 1474–1481, 1981.

    Article  Google Scholar 

  51. F. P. Kelly. Reversibility and Stochastic Networks. Wiley, New York, 1979.

    MATH  Google Scholar 

  52. D. G. Kendall. Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov chain. Ann. Math. Stat., 24:338–354, 1953.

    Article  MathSciNet  MATH  Google Scholar 

  53. A. Khinchin. Mathematisches über die Erwartung vor einem öffentlichen Schalter. Rec. Math., 39:72–84, 1932 (in Russian with German summary).

    Google Scholar 

  54. J. F. C. Kingman. Poisson Processes. Clarendon, Oxford, 1993.

    MATH  Google Scholar 

  55. L. Kleinrock. Queuing Systems. Volume 1: Theory. Wiley-Interscience, New York, 1975.

    Google Scholar 

  56. G. P. Klimov. Extremal Problems in Queueing Theory. Energia, Moskva, 1964 (in Russian).

    Google Scholar 

  57. E. V. Koba. On a retrial queueing system with a FIFO queueing discipline. Theory Stoch. Proc., 8:201–207, 2002.

    MathSciNet  Google Scholar 

  58. V. G. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman & Hall, London, 1995.

    MATH  Google Scholar 

  59. L. Lakatos. On a simple continuous cyclic waiting problem. Annal. Univ. Sci. Budapest Sect. Comp., 14:105–113, 1994.

    MathSciNet  MATH  Google Scholar 

  60. L. Lakatos. A note on the Pollaczek-Khinchin formula. Annal. Univ. Sci. Budapest Sect. Comp., 29:83–91, 2008.

    MathSciNet  MATH  Google Scholar 

  61. L. Lakatos. Cyclic waiting systems. Cybern. Syst. Anal., 46:477–484, 2010.

    Article  MathSciNet  Google Scholar 

  62. G. Latouche, V. Ramaswami. Introduction to matrix analytic methods in stochastic modeling. SIAM, 1999.

    Google Scholar 

  63. A. Lewandowski. Statistical tables. http://www.alewand.de. Nov. 13., 2012.

  64. D. V. Lindley. The theory of queues with a single server. Math. Proc. Cambridge Philos. Soc., 48:277–289, 1952.

    Article  MathSciNet  Google Scholar 

  65. T. Lindwall. Lectures on the Coupling Method. Wiley, New York, 1992.

    Google Scholar 

  66. J. D. C. Little. A proof of the queuing formula: L =AW. Oper. Res., 9:383–387, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  67. A. A. Markov. Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga. Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete, 15:135–156, 1906 (in Russian).

    Google Scholar 

  68. L. Massoulie, J. Roberts. Bandwidth sharing: Objectives and Algorithms. In Infocom, 1999.

    Google Scholar 

  69. V. F. Matveev, V. G. Ushakov. Queueing systems. Moscow State University, Moskva, 1984 (in Russian).

    MATH  Google Scholar 

  70. P. Medgyessy, L. Takács. Probability Theory. Tankönyvkiadó, Budapest, 1973 (in Hungarian).

    Google Scholar 

  71. S. Meyn, R. Tweedie. Markov chains and stochastic stability. Springer, Berlin Heidelberg New York, 1993.

    Book  MATH  Google Scholar 

  72. NIST: National Institute of Standards and Technology. Digital library of mathematical functions. http://dlmf.nist.gov. Nov. 13., 2012.

  73. M. Neuts. Probability distributions of phase type. In Liber Amicorum Prof. Emeritus H. Florin, pp. 173–206. University of Louvain, Louvain, Belgium, 1975.

    Google Scholar 

  74. M.F. Neuts. Matrix Geometric Solutions in Stochastic Models. Johns Hopkins University Press, Baltimore, 1981.

    MATH  Google Scholar 

  75. C. Palm. Methods of judging the annoyance caused by congestion. Telegrafstyrelsen, 4:189–208, 1953.

    Google Scholar 

  76. A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev. Integrals and series, vol. 2. Gordon and Breach, New York, 1986. Special functions.

    Google Scholar 

  77. S. Rácz, M. Telek, G. Fodor. Call level performance analysis of 3rd generation mobile core network. In IEEE International Conference on Communications, ICC 2001, 2:456–461, Helsinki, Finland, June 2001.

    Google Scholar 

  78. S. Rácz, M. Telek, G. Fodor. Link capacity sharing between guaranteed- and best effort services on an atm transmission link under GoS constraints. Telecommun. Syst., 17(1–2):93–114, 2001.

    Article  MATH  Google Scholar 

  79. M. Reiser, S. S. Lavenberg. Mean value analysis of closed multi-chain queueing networks. J. ACM, 27:313–322, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  80. J. Roberts. A service system with heterogeneous user requirements - application to multi-service telecommunications systems. In Proceedings of Performance of Data Communications Systems and Their Applications, pp. 423–431, Paris, 1981.

    Google Scholar 

  81. K. W. Ross. Multiservice Loss Models for Broadband Telecommunication Networks. Springer, Berlin Heidelberg New York, 1995.

    Book  MATH  Google Scholar 

  82. T. Saaty. Elements of Queueing Theory. McGraw-Hill, New York, 1961.

    MATH  Google Scholar 

  83. R. Serfozo. Introduction to Stochastic Networks. Springer, Berlin Heidelberg New York, 1999.

    Book  MATH  Google Scholar 

  84. A. N. Shiryaev. Probability. Springer, Berlin Heidelberg New York, 1994.

    Google Scholar 

  85. D. L. Snyder. Random Point Processes. Wiley, New York, 1975.

    MATH  Google Scholar 

  86. L. Szeidl. Estimation of the moment of the regeneration period in a closed central-server queueing network. Theory Probab. Appl., 31:309–313, 1986.

    Google Scholar 

  87. L. Szeidl. On the estimation of moment of regenerative cycles in a general closed central-server queueing network. Lect. Notes Math., 1233:182–189, 1987.

    Article  MathSciNet  Google Scholar 

  88. L. Takács. Investigation of waiting time problems by reduction to Markov processes. Acta Math. Acad. Sci. Hung., 6:101–129, 1955.

    Article  MATH  Google Scholar 

  89. L. Takács. The distribution of the virtual waiting time for a single-server queue with Poisson input and general service times. Oper. Res., 11:261–264, 1963.

    Article  MATH  Google Scholar 

  90. L. Takács. Combinatorial Methods in the Theory of Stochastic Processes. Wiley, New York, 1967.

    MATH  Google Scholar 

  91. H. Takagi. Queueing Analysis. North Holland, Amsterdam, 1991.

    MATH  Google Scholar 

  92. M. Telek. Minimal coefficient of variation of discrete phase type distributions. In G. Latouche, P. Taylor, eds., Advances in algorithmic methods for stochastic models, MAM3, pp. 391–400. Notable Publications, 2000.

    Google Scholar 

  93. A. Thümmler, P. Buchholz, M. Telek. A novel approach for fitting probability distributions to trace data with the em algorithm. IEEE Trans. Depend. Secure Comput., 3(3):245–258, 2006. Extended version of DSN 2005 paper.

    Google Scholar 

  94. H. Tijms. Stochastic Models: An Algorithmic Approach. Wiley, New York, 1994.

    MATH  Google Scholar 

  95. W. Whitt. A review of l = λw and extensions. Queue. Syst., 9:235–268, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  96. V. M. Zolotarev. Modern Theory of Summation of Random Variables. VSP, Utrecht, 1997.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakatos, L., Szeidl, L., Telek, M. (2013). Introduction to Probability Theory. In: Introduction to Queueing Systems with Telecommunication Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5317-8_1

Download citation

Publish with us

Policies and ethics