Advertisement

Introduction to Queueing Systems with Telecommunication Applications

  • Laszlo Lakatos
  • Laszlo Szeidl
  • Miklos Telek

Table of contents

  1. Front Matter
    Pages i-xi
  2. Introduction to Probability Theory and Stochastic Processes

    1. Front Matter
      Pages 1-1
    2. László Lakatos, László Szeidl, Miklós Telek
      Pages 3-53
    3. László Lakatos, László Szeidl, Miklós Telek
      Pages 55-76
    4. László Lakatos, László Szeidl, Miklós Telek
      Pages 77-121
    5. László Lakatos, László Szeidl, Miklós Telek
      Pages 123-163
    6. László Lakatos, László Szeidl, Miklós Telek
      Pages 165-188
  3. Queueing Systems

    1. Front Matter
      Pages 189-189
    2. László Lakatos, László Szeidl, Miklós Telek
      Pages 191-197
    3. László Lakatos, László Szeidl, Miklós Telek
      Pages 199-224
    4. László Lakatos, László Szeidl, Miklós Telek
      Pages 225-265
    5. László Lakatos, László Szeidl, Miklós Telek
      Pages 267-280
    6. László Lakatos, László Szeidl, Miklós Telek
      Pages 281-301
    7. László Lakatos, László Szeidl, Miklós Telek
      Pages 303-367
  4. Back Matter
    Pages 369-385

About this book

Introduction

The book is composed of two main parts: mathematical background and queueing systems with applications. The mathematical background is a self containing introduction to the stochastic processes of the later studies queueing systems. It starts with a quick introduction to probability theory and stochastic processes and continues with chapters on Markov chains and regenerative processes. More recent advances of queueing systems are based on phase type distributions, Markov arrival processes and quasy birth death processes, which are introduced in the last chapter of the first part.

 The second part is devoted to queueing models and their applications. After the introduction of the basic Markovian (from M/M/1 to M/M/1//N) and non-Markovian (M/G/1, G/M/1) queueing systems, a chapter presents the analysis of queues with  phase type distributions, Markov arrival processes (from PH/M/1 to MAP/PH/1/K). The next chapter presents the classical queueing network results and the rest of this part is devoted to the application examples. There are queueing models for bandwidth charing with different traffic classes, slotted multiplexers, ATM switches, media access protocols like Aloha and IEEE 802.11b, priority systems and retrial systems.

 An appendix supplements the technical content with Laplace and z transformation rules, Bessel functions and a list of notations. The book contains examples and exercises throughout and could be used for graduate students in engineering, mathematics and sciences.

Keywords

Markov chains queueing networks queueing systems stochastic models traffic engineering

Authors and affiliations

  • Laszlo Lakatos
    • 1
  • Laszlo Szeidl
    • 2
  • Miklos Telek
    • 3
  1. 1.Eotvos Lorant UniversityBudapestHungary
  2. 2.Obuda UniversityBudapestHungary
  3. 3.Technical University of BudapestBudapestHungary

Bibliographic information