Skip to main content

Coagulopathy: Pathophysiology, Evaluation, and Treatment

  • Chapter
  • First Online:
Liver Anesthesiology and Critical Care Medicine

Abstract

For centuries from Hippocrates and Galen to Virchow and Morawitz, the process of hemostasis and its pathways has mystified us, and Roman numerals have comprised our understanding of hemostasis and coagulation. The reassuring “cascade” of events that has represented the process of coagulation and hemostasis has remained dogma until recently. Hemostasis is a dynamic system comprised of “balanced” systems and cannot be explained away by a model of coagulation that is based on “cascades.” As we are forced to understand the “full” picture of hemostasis, we will evaluate coagulation in a more complete way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AT:

Antithrombin

CVP:

Central venous pressure

DDAVP:

Desmopressin

EACA:

Epsilon-aminocaproic acid

EPCR:

Endothelial protein C ­receptor

FFP:

Fresh frozen plasma

INR:

International normalized ration

PAI-1:

Plasminogen activator ­inhibitor

PT:

Prothrombin time

PTT:

Partial thromboplastin time

RBC:

Red blood cell

TACO:

Transfusion-associated ­circulatory overload

TAFI:

Thrombin activatable fibrinolysis inhibitor

TEG:

Thromboelastography

TF:

Tissue factor

TFPI:

Tissue factor pathway ­inhibitor

TM:

Thrombomodulin

tPA:

Tissue plasminogen ­activator

TRALI:

Transfusion-related acute lung injury

TxA:

Tranexamic acid

VWF:

von Willebrand factor

References

  1. Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science. 1964;145:1310–2.

    Article  PubMed  CAS  Google Scholar 

  2. Hoffman M, Monroe DM, Roberts HR. Cellular ­interaction in hemostasis. Haemostasis. 1996;26(Supp 1):12–6.

    PubMed  CAS  Google Scholar 

  3. Oliver J, Monroe D, Roberts H, et al. Thrombin activates factor XI on activated platelets in the absence of factor XII. Arterioscler Thromb Vasc Biol. 1999;19:170–7.

    Article  PubMed  CAS  Google Scholar 

  4. Baglia FA, Walsh PN. Prothrombin is a cofactor for the binding of factor XI to the platelet surface and for the platelet-mediated factor XI activation by thrombin. Biochemistry. 1998;37:2271–81.

    Article  PubMed  CAS  Google Scholar 

  5. Franssen J, Salemink I, Willems GM, et al. Prothrombinase is protected from inactivation by tissue factor pathway inhibitor: competition between prothrombin and inhibitor. Biochem J. 1997;323(Pt 1):33–7.

    PubMed  CAS  Google Scholar 

  6. Lu G, Broze GJJ, Krishnaswamy S. Formation of factors IXa and Xa by the extrinsic pathway: differential regulation by tissue factor pathway inhibitor and antithrombin III. J Biol Chem. 2004;279:17241–9.

    Article  PubMed  CAS  Google Scholar 

  7. Esmon CT, Stenflo J, Suttie JW. A new vitamin K-dependent protein. A phospholipid-binding zymogen of a serine esterase. J Biol Chem. 1976;251:3052–6.

    PubMed  CAS  Google Scholar 

  8. Esmon CT. The endothelial protein C receptor. Curr Opin Hematol. 2006;13:382–5.

    Article  PubMed  CAS  Google Scholar 

  9. Esmon C, Esmon N, Hams K. Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. J Biol Chem. 1982;257:7944.

    PubMed  CAS  Google Scholar 

  10. Lisman T, Leebek FWG. Hemostatic alterations in liver disease: a review on pathophysiology, clinical consequences, and treatment. Dig Surg. 2007;24:250–8.

    Article  PubMed  Google Scholar 

  11. Monroe DM, Hoffman M. The coagulation cascade in cirrhosis. Clin Liver Dis. 2009;13:1–9.

    Article  PubMed  Google Scholar 

  12. Jennings I, Calne RY, Baglin TP. Predictive value of von Willebrand factor to ristocetin cofactor ratio and thrombin-antithrombin complex levels for hepatic vessel thrombosis and graft rejection after liver transplantation. Transplantation. 1994;57:1046–51.

    PubMed  CAS  Google Scholar 

  13. De Caterina M, Tarantino G, Farina C, et al. Haemostasis unbalance in Pugh-scored liver cirrhosis: characteristic changes of plasma levels of protein C versus protein S. Haemostasis. 1993;23:229–35.

    PubMed  Google Scholar 

  14. Raya-Sanchez JM, Gonzalez-Reimers E, Rodriguez-Martin JM, et al. Coagulation inhibitors in alcoholic liver cirrhosis. Alcohol. 1998;15:19–23.

    Article  PubMed  CAS  Google Scholar 

  15. Tripodi A, Salerno F, Chantarangkul V, et al. Evidence of normal thrombin generation in cirrhosis despite abnormal conventional coagulation tests. Hepatology. 2005;41:553–8.

    Article  PubMed  CAS  Google Scholar 

  16. Hedner U, Erhardsten E. Hemostatic disorders in liver diseases. In: Schiff ER, Sorrel MF, Maddrey WC, editors. Schiff’s disease of the liver. Philadelphia: Lippincott Williams & Wilkins; 2003. p. 625–63.

    Google Scholar 

  17. Aster RH. Pooling of platelets in the spleen: role in the pathogenesis of “hypersplenic” thrombocytopenia. J Clin Invest. 1966;45(5):645–57.

    Article  PubMed  CAS  Google Scholar 

  18. Goulis J, Chau TN, Jordan S, et al. Thrombopoietin concentrations are low in patients with cirrhosis and thrombocytopenia and are restored after orthotopic liver transplantation. Gut. 1999;44(5):754–8.

    Article  PubMed  CAS  Google Scholar 

  19. Nagamine T, Ohtuka T, Takehara K, et al. Thrombocytopenia associated with hepatitis C viral infection. J Hepatol. 1996;24(2):135–40.

    Article  PubMed  CAS  Google Scholar 

  20. Levine RF, Spivak JL, Meagher RC, et al. Effect of ethanol on thrombopoiesis. Br J Haematol. 1986;62(2):345–54.

    Article  PubMed  CAS  Google Scholar 

  21. Klipstein FA, Lindenbaum J. Folate deficiency in chronic liver disease. Blood. 1965;25:443–56.

    PubMed  CAS  Google Scholar 

  22. Ben-Ari Z, Osman E, Hutton RA, et al. Disseminated intravascular coagulation in liver cirrhosis: fact or fiction? Am J Gastroenterol. 1999;94(10):2977–82.

    Article  PubMed  CAS  Google Scholar 

  23. Carr JM. Disseminated intravascular coagulation in cirrhosis. Hepatology. 1989;10(1):103–10.

    Article  PubMed  CAS  Google Scholar 

  24. Ordinas A, Escolar G, Cirera I, et al. Existence of a platelet-adhesion defect in patients with cirrhosis independent of hematocrit: studies under flow conditions. Hepatology. 1996;24(5):1137–42.

    Article  PubMed  CAS  Google Scholar 

  25. Escolar G, Cases A, Vinas M, et al. Evaluation of acquired platelet dysfunctions in uremic and cirrhotic patients using the platelet function analyzer (PFA-100): influence of hematocrit elevation. Haematologica. 1999;84(7):614–9.

    PubMed  CAS  Google Scholar 

  26. Laffi G, Cominelli F, Ruggiero M, et al. Altered platelet function in cirrhosis of the liver: impairment of inositol lipid and arachidonic acid metabolism in response to agonists. Hepatology. 1988;8(6):1620–6.

    Article  PubMed  CAS  Google Scholar 

  27. Laffi G, La Villa G, Pinzani M, et al. Altered renal and platelet arachidonic acid metabolism in cirrhosis. Gastroenterology. 1986;90(2):274–82.

    PubMed  CAS  Google Scholar 

  28. Laffi G, Marra F, Gresele P, et al. Evidence for a storage pool defect in platelets from cirrhotic patients with defective aggregation. Gastroenterology. 1992;103(2):641–6.

    PubMed  CAS  Google Scholar 

  29. Laffi G, Cominelli F, La Villa G, et al. Reduced platelet thromboxane A2 production as a possible cause of defective platelet aggregation in cirrhosis. Adv Prostaglandin Thromboxane Leukot Res. 1987;17A:366–9.

    PubMed  CAS  Google Scholar 

  30. Laffi G, Marra F, Failli P, et al. Defective signal transduction in platelets from cirrhotics is associated with increased cyclic nucleotides. Gastroenterology. 1993;105(1):148–56.

    PubMed  CAS  Google Scholar 

  31. Ordinas A, Maragall S, Castillo R, et al. A glycoprotein I defect in the platelets of three patients with severe cirrhosis of the liver. Thromb Res. 1978;13(2):297–302.

    Article  PubMed  CAS  Google Scholar 

  32. Sanchez-Roig MJ, Rivera J, Moraleda JM, et al. Quantitative defect of glycoprotein Ib in severe cirrhotic patients. Am J Hematol. 1994;45(1):10–5.

    Article  PubMed  CAS  Google Scholar 

  33. Pasche B, Ouimet H, Francis S, et al. Structural changes in platelet glycoprotein IIb/IIIa by plasmin: determinants and functional consequences. Blood. 1994;83(2):404–14.

    PubMed  CAS  Google Scholar 

  34. Cahill PA, Redmond EM, Sitzmann JV. Endothelial dysfunction in cirrhosis and portal hypertension. Pharmacol Ther. 2001;89(3):273–93.

    Article  PubMed  CAS  Google Scholar 

  35. Desai K, Mistry P, Bagget C, et al. Inhibition of platelet aggregation by abnormal high density lipoprotein particles in plasma from patients with hepatic cirrhosis. Lancet. 1989;1(8640):693–5.

    Article  PubMed  CAS  Google Scholar 

  36. Turitto VT, Baumgartner HR. Platelet interaction with subendothelium in a perfusion system: physical role of red blood cells. Microvasc Res. 1975;9(3):335–44.

    Article  PubMed  CAS  Google Scholar 

  37. Lisman T, Bongers TN, Adelmeijer J, et al. Elevated levels of von Willebrand factor in cirrhosis support platelet adhesion despite reduced functional capacity. Hepatology. 2006;44(1):53–61.

    Article  PubMed  CAS  Google Scholar 

  38. Tripodi A, Primignani M, Chantarangkul V, et al. Thrombin generation in patients with cirrhosis: the role of platelets. Hepatology. 2006;44(2):440–5.

    Article  PubMed  CAS  Google Scholar 

  39. Lisman T, Adelmeijer J, de Groot PG, et al. No evidence for an intrinsic platelet defect in patients with liver cirrhosis—studies under flow conditions. J Thromb Haemost. 2006;4(9):2070–2.

    Article  PubMed  CAS  Google Scholar 

  40. Caldwell SH, Hoffman M, Lisman T, et al. Coagulation disorders and hemostasis in liver disease: pathophysiology and critical assessment of current management. Hepatology. 2006;44:1039–46.

    Article  PubMed  CAS  Google Scholar 

  41. Broohy MT, Fiore L, Deykin D. Hemostasis. In: Zakim D, Boyer TD, editors. Hepatology: a textbook of liver disease. 3rd ed. Philadelphia: Saunders; 1196. p. 691–719.

    Google Scholar 

  42. Steib A, Gengenwin AS, Freys G, et al. Predictive factors of hyperfibrinolytic activity during liver transplantation in cirrhotic patients. Br J Anaesth. 1994;73:645–8.

    Article  PubMed  CAS  Google Scholar 

  43. Pernambuco JR, Langley PG, Hughes RD, et al. Activation of the fibrinolytic system in patients with fulminant liver failure. Hepatology. 1993;18:1350–6.

    Article  PubMed  CAS  Google Scholar 

  44. Gunawan B, Runyon B. The efficacy and safety of e-aminocaproic acid treatment in patients with cirrhosis and hyperfibrinolysis. Aliment Pharmacol Ther. 2006;23:115–20.

    Article  PubMed  CAS  Google Scholar 

  45. Hu KQ, Yu AS, Tyyagura L, et al. Hyperfibrinolytic activity in hospitalized cirrhotic patients in a referral liver unit. Am J Gastroenterol. 2001;96:1581–6.

    Article  PubMed  CAS  Google Scholar 

  46. Boks AL, Brommer EJ, Schalm SW, et al. Hemostasis and fibrinolysis in severe liver failure and their relation to hemorrhage. Hepatology. 1986;6:79–86.

    Article  PubMed  CAS  Google Scholar 

  47. Leebek FW, Kluft C, Knot EA, et al. A shift in balance between profibrinolytic and antifibrinolytic factors causes enhanced fibrinolysis in cirrhosis. Gastroenterology. 1991;101:1382–90.

    Google Scholar 

  48. Ferro D, Quintarelli C, Saliola M, et al. Prevalence of hyperfibrinolysis in patients with liver cirrhosis. Fibrinolysis. 1993;7:59–62.

    Article  Google Scholar 

  49. Kujovich JL. Hemostatic defects in end stage liver disease. Crit Care Clin. 2005;21:563–87.

    Article  PubMed  Google Scholar 

  50. Stein SF, Harker LA. Kinetic and functional studies of platelets, fibrinogen and plasminogen in patients with hepatic cirrhosis. J Lab Clin Med. 1982;99:217–30.

    PubMed  CAS  Google Scholar 

  51. Aoki N, Yamamata T. The alpha-2 plasmin inhibitor levels in liver disease. Clin Chim Acta. 1978;84:99–105.

    Article  PubMed  CAS  Google Scholar 

  52. Knot E, Drijfhout HR, tenCate JW, et al. Alpha 2-plamin inhibitor metabolism in patients with liver cirrhosis. J Lab Clin Med. 1985;105:353–8.

    PubMed  CAS  Google Scholar 

  53. Marongiu F, Mamusa AM, Mameli G, et al. Alpha 2 antiplasmin and disseminated intravascular coagulation in liver cirrhosis. Thromb Res. 1985;37:287–94.

    Article  PubMed  CAS  Google Scholar 

  54. Gram J, Jespersen J, Ingeberg S, et al. Plasma histidine-rich glycoprotein and plasminogen in patients with liver disease. Thromb Res. 1985;39:411–7.

    Article  PubMed  CAS  Google Scholar 

  55. Leebek FW, Kluft C, Knot EA, et al. Histidine-rich glycoprotein is elevated in mild liver cirrhosis and decreased in moderate and severe liver cirrhosis. J Lab Clin Med. 1989;113:493–7.

    Google Scholar 

  56. Biland L, Duckert F, Prisender S, et al. Quantitative estimation of coagulation factors in liver disease. The diagnostic and prognostic value of factor XIII, factor V and plasminogen. Thromb Haemost. 1978;39:646–56.

    PubMed  CAS  Google Scholar 

  57. Bajzar L, Manuel R, Nesheim M. Purification and characterization of TAFI, a thrombin activatable fibrinolysis inhibitor. J Biol Chem. 1995;270:14477–84.

    Article  PubMed  CAS  Google Scholar 

  58. Hendriks D, Wang W, Scharpe S, et al. Purification and characterization of a new arginine carboxypeptidase in human serum. Biochim Biophys Acta. 1990;1034:86–92.

    Article  PubMed  CAS  Google Scholar 

  59. Wang W, Hendriks DF, Scharpe S. Carboxypeptidase U, a plasma carboxypeptidase with high affinity for plasminogen. J Biol Chem. 1994;269:15937–44.

    PubMed  CAS  Google Scholar 

  60. Rijken DC, Emeis JJ. Clearance of the heavy and light polypeptide chains of human tissue-type plasminogen activators in rats. Biochem J. 1986;238:643–6.

    PubMed  CAS  Google Scholar 

  61. Einarasson M, Smedsrod B, Pertoft H. Uptake and degradation of tissue plasminogen activator in rats liver. Thromb Haemost. 1988;59:474–9.

    Google Scholar 

  62. Amitrano L, Guardascione MA, Brancaccio V, et al. Coagulation disorders in liver disease. Semin Liver Dis. 2002;22:83–96.

    Article  PubMed  CAS  Google Scholar 

  63. Violi F, Ferro D, Basili S, et al. Hyperfibrinolysis resulting from clotting activation in patients with different degrees of cirrhosis. Hepatology. 1993;17:78–83.

    Article  PubMed  CAS  Google Scholar 

  64. Van Thiel DH, George M, Fareed J. Low levels of thrombin activatable fibrinolysis inhibitor (TAFI) in patients with chronic liver disease. Thromb Haemost. 2001;85:667–70.

    PubMed  Google Scholar 

  65. Colucci M, Binetti BM, Branca MG, et al. Deficiency of thrombin activatable fibrinolysis inhibitor in cirrhosis is associated with increased plasma fibrinolysis. Hepatology. 2003;38:230–7.

    Article  PubMed  CAS  Google Scholar 

  66. Lisman T, Leebek FW, Mosnier LO, et al. Thrombin activatable fibrinolysis inhibitor deficiency in cirrhosis is not associated with increased plasma fibrinolysis. Gastroenterology. 2001;121:131–9.

    Article  PubMed  CAS  Google Scholar 

  67. Aytac S, Turkay C, Bavbek N, et al. Hemostasis and global fibrinolytic capacity in chronic liver disease. Blood Coagul Fibrinolysis. 2007;18:623–6.

    Article  PubMed  Google Scholar 

  68. Hambleton J, Leung LL, Levi M. Coagulation: consultative hemostasis. Hematology Am Soc Hematol Educ Program. 2002;10:335–52.

    Article  Google Scholar 

  69. Senzolo M, Burra P, Cholongitas E, et al. New insights into the coagulopathy of liver disease and liver transplantation. World J Gastroenterol. 2006;12:7725–36.

    PubMed  CAS  Google Scholar 

  70. Porte J. Coagulation and fibrinolysis in orthotopic liver transplantation: current views and insight. Semin Thromb Hemost. 2003;19:191–8.

    Article  Google Scholar 

  71. Homatas J, Wasantapruek S, Von Kaulla E, et al. Clotting abnormalities following orthotopic and heterotopic transplantation of marginally preserved pig livers. Acta Hepatosplenol. 1971;18:14–26.

    PubMed  CAS  Google Scholar 

  72. Porte RJ, Bontempo FA, Knot EA, et al. Systemic effects of tissue plasminogen activator-associated fibrinolysis and its relation to thrombin generation in orthotopic liver transplantation. Transplantation. 1989;47:978–84.

    Article  PubMed  CAS  Google Scholar 

  73. Iwakiri Y, Groszmann RJ. Vascular endothelial dysfunction in cirrhosis. J Hepatol. 2007;46(5):927–34.

    Article  PubMed  CAS  Google Scholar 

  74. Gupta TK, Toruner M, Chung MK, et al. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology. 1998;28(4):926–31.

    Article  PubMed  CAS  Google Scholar 

  75. Rockey DC, Chung JJ. Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension. Gastroenterology. 1998;114(2):344–51.

    Article  PubMed  CAS  Google Scholar 

  76. Sarela AI, Mihaimeed FM, Batten JJ, et al. Hepatic and splanchnic nitric oxide activity in patients with cirrhosis. Gut. 1999;44(5):749–53.

    Article  PubMed  CAS  Google Scholar 

  77. Graupera M, Garcia-Pagan JC, Pares M, et al. Cyclooxygenase-1 inhibition corrects endothelial dysfunction in cirrhotic rat livers. J Hepatol. 2003;39(4):515–21.

    Article  PubMed  CAS  Google Scholar 

  78. Graupera M, March S, Engel P, et al. Sinusoidal endothelial COX-1-derived prostanoids modulate the hepatic vascular tone of cirrhotic rat livers. Am J Physiol Gastrointest Liver Physiol. 2005;288(4):G763–70.

    Article  PubMed  CAS  Google Scholar 

  79. Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology. 2006;43(2 Suppl 1):S121–31.

    Article  PubMed  CAS  Google Scholar 

  80. Groszmann RJ, Abraldes JG. Portal hypertension: from bedside to bench. J Clin Gastroenterol. 2005;39(4 Suppl 2):S125–30.

    Article  PubMed  Google Scholar 

  81. Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology. 2002;35(2):478–91.

    Article  PubMed  CAS  Google Scholar 

  82. Rand ML, Leung R, Packham MA. Platelet function assays. Transfus Apher Sci. 2003;28(3):307–17.

    Article  PubMed  Google Scholar 

  83. Rodgers RP, Levin J. A critical reappraisal of the bleeding time. Semin Thromb Hemost. 1990;16(1):1–20.

    Article  PubMed  CAS  Google Scholar 

  84. de Franchis R, Arcidiacono PG, Carpinelli L, et al. Randomized controlled trial of desmopressin plus terlipressin vs. terlipressin alone for the treatment of acute variceal hemorrhage in cirrhotic patients: a multicenter, double-blind study. New Italian Endoscopic Club. Hepatology. 1993;18(5):1102–7.

    Article  PubMed  Google Scholar 

  85. Wong AY, Irwin MG, Hui TW, et al. Desmopressin does not decrease blood loss and transfusion requirements in patients undergoing hepatectomy. Can J Anaesth. 2003;50(1):14–20.

    Article  PubMed  Google Scholar 

  86. Pivalizza EG, Warters RD, Gebhard R. Desmopressin before liver transplantation. Can J Anaesth. 2003;50(7):748–9.

    Article  PubMed  Google Scholar 

  87. Kundu SK, Heilmann EJ, Sio R, et al. Description of an in vitro platelet function analyzer–PFA-100. Semin Thromb Hemost. 1995;21 Suppl 2:106–12.

    PubMed  Google Scholar 

  88. Quick AJ. The prothrombin in hemophilia and in obstructive jaundice. J Biol Chem. 1935;109:73–4.

    Google Scholar 

  89. Olson JD, Brandt JT, Chandler WL, et al. Laboratory reporting for the international normalized ratio: progress and problems. Arch Pathol Lab Med. 2007;131:1641–7.

    PubMed  Google Scholar 

  90. Trotter JF, Brimhall B, Arjal R, et al. Specific laboratory methodologies achieve higher model for end-stage liver disease (MELD) scores for patients listed for liver transplantation. Liver Transpl. 2004;10:995–1000.

    Article  PubMed  Google Scholar 

  91. Kovacs MH, Wong A, MacKinnon K, et al. Assessment of the validity of the INR system for patients with liver impairment. Thromb Haemost. 1994;71:727–30.

    PubMed  CAS  Google Scholar 

  92. Denson KWE, Reed SV, Haddon ME, et al. Comparative studies of rabbit and human recombinant tissue factor reagents. Thromb Res. 1999;94:255–61.

    Article  PubMed  CAS  Google Scholar 

  93. Robert A, Chazouilleres O. Prothrombin time in liver failure: time, ratio, activity percentage, or international normalized ratio. Hepatology. 1996;24:1392–4.

    Article  PubMed  CAS  Google Scholar 

  94. Ewe K. Bleeding after liver biopsy does not correlate with indices of peripheral coagulation. Dig Dis Sci. 1981;26:388–93.

    Article  PubMed  CAS  Google Scholar 

  95. Segal JB, Dzik WH. Paucity of studies to support that abnormal coagulation test results predict bleeding in the setting of invasive procedures: an evidence-based review. Transfusion. 2005;45:1413–25.

    Article  PubMed  Google Scholar 

  96. Diaz LK, Teruya J. Liver biopsy. N Engl J Med. 2001;344:2030.

    PubMed  CAS  Google Scholar 

  97. Terjung B, Lemnitzer I, Dumoulin FL, et al. Bleeding complications after percutaneous liver biopsy. An analysis of risk factors. Digestion. 2003;67:138–45.

    Article  PubMed  Google Scholar 

  98. Bravo AA, Sheth SG, Chopra S. Liver biopsy. N Engl J Med. 2001;344:495–500.

    Article  PubMed  CAS  Google Scholar 

  99. Dahlback B. Progress in the understanding of the protein C anticoagulant pathway. Int J Hematol. 2004;79:109–16.

    Article  PubMed  CAS  Google Scholar 

  100. Reikvam H. Thromboelastography. Transfus Apher Sci. 2009;40:119–23.

    Article  PubMed  Google Scholar 

  101. Di Cera E. Thrombin as procoagulant and anticoagulant. J Thromb Haemost. 2007;5 Suppl 1:196–202.

    Article  PubMed  Google Scholar 

  102. Bombeli T, Spahn DR. Updates in perioperative coagulation: physiology and management of thromboembolism and haemorrhage. Crit Care. 2004;93(2):275–87.

    CAS  Google Scholar 

  103. Kang YG, Martin DJ, Marquez J, Lewis JH, Bontempo FA, Shaw Jr BW, et al. Intraoperative Changes in Blood Coagulation and Throm­belastographic Monitoring in Liver Transplantation. Anesth Analg. 1985;64(9):888–96.

    Article  PubMed  CAS  Google Scholar 

  104. Koh MB, Hunt BJ. The management of perioperative bleeding. Blood Rev. 2003;17:179–85.

    Article  PubMed  CAS  Google Scholar 

  105. Hendriks HG, van der Meer J, de Wolf JT, et al. Intraoperative blood transfusion requirement is the main determinant of early surgical re-intervention after orthotopic liver transplantation. Transpl Int. 2005;17:673–9.

    Article  PubMed  CAS  Google Scholar 

  106. Cacciarelli TV, Keeffe EB, Moore DH, et al. Effect of intraoperative blood transfusion on patient outcome in hepatic transplantation. Arch Surg. 1999;134:25–9.

    Article  PubMed  CAS  Google Scholar 

  107. Stainsby D, Williamson L, Jones H, et al. 6 Years of shot reporting—its influence on UK blood safety. Transfus Apher Sci. 2004;31:123–31.

    Article  PubMed  Google Scholar 

  108. de Boer MT, Molenaar IQ, Hendriks HG, et al. Minimizing blood loss in liver transplantation: progress through research and evolution of techniques. Dig Surg. 2005;22:265–75.

    Article  PubMed  Google Scholar 

  109. Porte RJ, Hendriks HG, Slooff MJ. Blood conservation in liver transplantation: the role of aprotinin. J Cardiothorac Vasc Anesth. 2004;18:31S–7.

    Article  PubMed  CAS  Google Scholar 

  110. Ramos E, Dalmau A, Sabate A, et al. Intraoperative red blood cell transfusion in liver transplantation: influence on patient outcome, prediction of requirements, and measures to reduce them. Liver Transpl. 2003;9:1320–7.

    Article  PubMed  Google Scholar 

  111. O’Shaughnessy DF, Atterbury C, Bolton Maggs P, Murphy M, Thomas D, Yates S, et al. Guidelines for the use of fresh-frozen plasma, cryoprecipitate and cryosupernatant. Br J Haematol. 2004;126(1):11–28.

    Google Scholar 

  112. Goodnough LT, Johnston MF, Shah T, Chernosky A. A two-institution study of transfusion practice in 78 consecutive adult elective open-heart procedures. Am J Clin Pathol. 1989;91(4):468–72.

    PubMed  CAS  Google Scholar 

  113. Tinmouth AT, Hutton B, Fergusson DA, Hebert PC, Platelet FFP. Transfusions are Associated with Increased Mortality in Cardiac Surgery. Critical Care and Hip Fracture Patients. Transfusion. 2005;45 Suppl 3:35a.

    Google Scholar 

  114. Dara SI, Rana R, Afessa B, Moore SB, Gajic O. Fresh frozen plasma transfusion in critically ill medical patients with coagulopathy. Crit Care Med. 2005;33(11):2667–71.

    Article  PubMed  Google Scholar 

  115. SHOT: Serious hazards of Transfusion annual report 2005. SHOT Steering Committee. http://www.shotuk.org. 2006. Fresh frozen plasma use. Transfusion 1986;26(6):511–3.

    Google Scholar 

  116. Burns ER, Goldberg SN, Wenz B. Paradoxic effect of multiple mild coagulation factor deficiencies on the prothrombin time and activated partial thromboplastin time. Am J Clin Pathol. 1993;100:948.

    Google Scholar 

  117. Dzik WH. Predicting haemorrhage using preoperative coagulation screening assays. Curr Hematol Rep. 2004;3(5):324–30.

    PubMed  Google Scholar 

  118. Massicotte L. Coagulation defects do not predict blood product requirements during liver transplantation. Transplantation. 2008;85(7):956–62.

    Article  PubMed  Google Scholar 

  119. MacLennan S, Williamson LM. Risks of fresh frozen plasma and platelets. J Trauma. 2006;60:S46–50.

    PubMed  Google Scholar 

  120. Holness L, Knippen MA, Simmons L, Lachenbruch PA. Fatalities caused by TRALI. Transfus Med Rev. 2004;18:184–8.

    Article  PubMed  Google Scholar 

  121. Toy P, Popovsky MA, National Heart, Lung and Blood Institute Working Group on TRALI. Transfusion-related acute lung injury: definition and review. Crit Care Med. 2005;33(4):721–6.

    Article  PubMed  Google Scholar 

  122. Stanworth SJ, Hyde CJ. Evidence for indications of fresh frozen plasma. Transfus Clin Biol. 2007;14: 551–6.

    Article  PubMed  CAS  Google Scholar 

  123. Massicotte L. Effect of low central venous pressure and phlebotomy on blood product transfusion requirements during liver transplantation. Liver Transpl. 2006;12:117–23.

    Article  PubMed  Google Scholar 

  124. Massicotte L, Sassine M-P, Lenis S, et al. Survival rate changes with transfusion of blood products during liver transplantation. Can J Anaesth. 2005;52:148.26.

    Google Scholar 

  125. American Society of Anesthesiology. Practice guidelines for perioperative blood transfusion and adjuvant therapies. Anesthesiology. 2006;105:198–208.

    Article  Google Scholar 

  126. Sindram D, Porte RJ, Hoffman MR, Bentley RC, Clavien PA. Platelets induce sinusoidal endothelial cell apoptosis upon reperfusion of the cold ischemic rat liver. Gastroenterology. 2000;118:183–91.

    Article  PubMed  CAS  Google Scholar 

  127. Cywes R, Packham MA, Tietze L, Sanabria JR, Harvey PRC, Phillips MJ, et al. Role of platelets in hepatic allograft preservation injury in the rat. Hepatology. 1993;18:635–47.

    Article  PubMed  CAS  Google Scholar 

  128. Porte RJ, Blauw E, Knot EA, de Maat MP, de Ruiter C, Minke BC, Terpstra OT. Role of the donor liver in the origin of platelet disorders and hyperfibrinolysis in liver transplantation. J Hepatol. 1994;21:592–600.

    Article  PubMed  CAS  Google Scholar 

  129. Lesurtel M, Graf R, Aleil B, Walther DJ, Tian Y, Jochum W, et al. Platelet-derived serotonin mediates liver regeneration. Science. 2006;312:104–7.

    Article  PubMed  CAS  Google Scholar 

  130. Himmelreich G, Hundt K, Neuhaus P, Roissant R, Riess H. Decreased platelet aggregation after reperfusion in orthotopic liver transplantation. Transplantation. 1992;53:582–6.

    Article  PubMed  CAS  Google Scholar 

  131. Himmelreich G, Hundt K, Isenberg C, Bechstein WO, Neuhaus P, Riess H. Thrombocytopenia and platelet dysfunction in orthotopic liver transplantation. Semin Thromb Hemost. 1993;19:209–12.

    Article  PubMed  CAS  Google Scholar 

  132. Day JRS, Punjabi PP, Randi AM, Haskard DO, Landis RC, Taylor KM. Clinical inhibition of the seven-transmembrane thrombin receptor (PAR1) by intravenous aprotinin during cardiothoracic surgery. Circulation. 2004;110:2597–600.

    Article  PubMed  CAS  Google Scholar 

  133. Federici AB, Berkowitz SD, Lattuada A, Mannucci PM. Degradation of von Willebrand factor in patient with acquired clinical conditions in which there is heightened proteolysis. Blood. 1993;81:720–5.

    PubMed  CAS  Google Scholar 

  134. Porte RJ, Leebeek FW. Pharmacological strategies to decrease transfusion requirements in patients undergoing surgery. Drugs. 2002;62:2193–211.

    Article  PubMed  CAS  Google Scholar 

  135. Stricker RB, Wong D, Shiu DT, Reyes PT, Shuman MA. Activation of plasminogen by tissue plasminogen activator on normal and thrombasthenic platelets: effects on surface proteins and platelet aggregation. Blood. 1986;68:275–80.

    PubMed  CAS  Google Scholar 

  136. Schalm SW, Terpstra JL, Achterberg JR, Noordhoek HV, Haverkate F, Popescu DT, et al. Orthotopic liver transplantation: an experimental study on mechanisms of hemorrhagic diathesis and thrombosis. Surgery. 1975;78:499–507.

    PubMed  CAS  Google Scholar 

  137. Boer MT, Christensen MC, Amussen M, et al. The impact of intraoperative transfusion of platelets and red blood cells on survival after liver transplantation. Anesth Analg. 2008;106:32–44.

    Article  PubMed  Google Scholar 

  138. Dalmau A, Sabate A, Koo M, et al. Prophylactic use of tranexamic acid and Incidence of arterial thrombosis in liver transplantation. Anesth Analg. 2001;93:514–9.

    Google Scholar 

  139. Mor E, Jennings L, Gonwa TA, et al. The impact of operative bleeding on outcome in transplantation of the liver. Surg Gynecol Obstet. 1993;176:219–27.

    PubMed  CAS  Google Scholar 

  140. Grabau C. Performance standards for therapeutic abdominal paracentesis. Hepatology. 2004;40:484–8.

    Article  PubMed  Google Scholar 

  141. Lin CH. Should bleeding tendency deter abdominal paracentesis? Dig Liver Dis. 2005;37(12):946–51.

    Article  PubMed  Google Scholar 

  142. Hanson SR, Slichter SJ. Platelet kinetics in patients with bone marrow hypoplasia: evidence for a fixed platelet requirement. Blood. 1985;66:1105–9.

    PubMed  CAS  Google Scholar 

  143. Greeno E, McCullough J, Weisdorf D. Platelet utilization and the transfusion trigger: a prospective analysis. Transfusion. 2007;47:201–5.

    Article  PubMed  Google Scholar 

  144. Cameron B, Rock G, Olberg B, Neurath D. Evaluation of platelet transfusion triggers in a tertiary care hospital. Transfusion. 2007;47:206–11.

    Article  PubMed  Google Scholar 

  145. Rinder HM, Arbini AA, Snyder EL. Optimal dosing and triggers for prophylactic use of platelet transfusions. Curr Opin Hematol. 1999;6:437–41.

    Article  PubMed  CAS  Google Scholar 

  146. Tinmouth AT, Fredman J. Prophylactic platelet transfusions: which dose is the best dose? A review of the literature. Transfus Med Rev. 2003;17:181–93.

    Article  PubMed  Google Scholar 

  147. Schlossberg HR, Herman JH. Platelet dosing. Transfus Apher Sci. 2003;28:221–6.

    Article  PubMed  Google Scholar 

  148. Canadian Blood Services. Circular of Information. Ottawa: Canadian Blood Services, 2002.

    Google Scholar 

  149. American Association of Blood Banks. Blood Transfusion Therapy: a physician’s handbook. 7th ed. Bethesda MD: American Association of Blood Banks; 2002.

    Google Scholar 

  150. Rebulla P, Finazzi G, Marangoni F, et al. The threshold for platelet transfusions in adults with acute myeloid leukemia. N Engl J Med. 1997;337:1870–5.

    Article  PubMed  CAS  Google Scholar 

  151. Rebulla P. In vitro and in vivo properties of various types of platelets. Vox Sang. 1998;74 Suppl 2:217–22.

    Article  PubMed  Google Scholar 

  152. Stanca C. Intranasal desmopressin versus blood transfusion in cirrhotic patient with coagulopathy undergoing dental extraction: a randomized control trial. J Oral Maxillofac Surg. 2010;68(1):138–43.

    Article  PubMed  Google Scholar 

  153. Laupacis A. Drug to minimize perioperative blood loss in cardiac surgery: meta-analysis using perioperative blood transfusion as the outcome. The International Study of Peri-operative Transfusion (ISPOT) Investigators. Anesth Analg. 1997;85:1258–67.

    PubMed  CAS  Google Scholar 

  154. Levi M. Pharmacological strategies to decrease excessive blood loss in cardiac surgery: a meta-analysis of clinically relevant endpoints. Lancet. 1999;364:1940–7.

    Article  Google Scholar 

  155. Theroux MC. A study of desmopressin and blood loss during spinal fusion for neuromuscular scoliosis: a randomized, controlled, double-blinded study. Anesthesiology. 1997;87:260–7.

    Article  PubMed  CAS  Google Scholar 

  156. Ozier Y. Pharmacological approaches to reducing blood loss and transfusions in the surgical patient. Can J Anaesth. 2006;53(6):S21–9.

    PubMed  Google Scholar 

  157. Marcel RJ, Stegall WC, Suit CT, et al. Continuous small-dose aprotinin controls fibrinolysis during orthotopic liver transplantation. Anesth Analg. 1996;82:1122–5.

    PubMed  CAS  Google Scholar 

  158. Garcia-Huete L, Domenech P, Sabate A, Martinez-Brotons F, Jaurrieta E, Figueras J. The prophylactic effect of aprotinin on intraoperative bleeding in liver transplantation: a randomized clinical study. Hepatology. 1997;26:1143–8.

    Article  PubMed  CAS  Google Scholar 

  159. Porte RJ, Molenaar IQ, Begliomini B, et al. Aprotinin and transfusion requirements in orthotopic liver transplantation: a multicentre randomised double-blind study. EMSALT Study Group. Lancet. 2000;355:1303–9.

    Article  PubMed  CAS  Google Scholar 

  160. Henry DA, Moxey AJ, Carless PA, et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2001;1:CD001886. 2006; 354: 353–65.

    PubMed  Google Scholar 

  161. Kang Y, Lewis JH, Navalgund A, et al. Epsilon-aminocaproic acid for treatment of fibrinolysis during liver transplantation. Anesthesiology. 1987;66:766–73.

    Article  PubMed  CAS  Google Scholar 

  162. Dalmau A, Sabate A, Acosta F, et al. Tranexamic acid reduces red cell transfusion better than epsilon- aminocaproic acid or placebo in liver transplantation. Anesth Analg. 2000;91:29–34.

    PubMed  CAS  Google Scholar 

  163. Boylan JF, Klinck JR, Sandler AN, et al. Tranexamic acid reduces blood loss, transfusion requirements, and coagulation factor use in primary orthotopic liver transplantation. Anesthesiology. 1996;85:1043–8.

    Article  PubMed  CAS  Google Scholar 

  164. van’t Veer C, Mann KG. The regulation of the factor VII-dependent coagulation pathway: rationale for the effectiveness of recombinant factor VIIa in refractory bleeding disorders. Semin Thromb Hemost. 2000;26:367–72.

    Article  PubMed  Google Scholar 

  165. Butenas S, Brummel KE, Bouchard BA, Mann KG. How factor VIIa works in hemophilia. J Thromb Haemost. 2003;1:1158–60.

    Article  PubMed  CAS  Google Scholar 

  166. Butenas S, Brummel KE, Paradis SG, Mann KG. Influence of factor VIIa and phospholipids on coagulation in acquired hemophilia. Arterioscler Thromb Vasc Biol. 2003;23:123–9.

    Article  PubMed  CAS  Google Scholar 

  167. Monroe DM, Hoffman M, Oliver JA, Roberts HR. Platelet activity of high-dose factor VIIa is independent of tissue factor. Br J Haematol. 1997;99:542–7.

    Article  PubMed  CAS  Google Scholar 

  168. Pusateri AE, Park MS. Mechanistic implications for the use and monitoring of recombinant activated factor VII in trauma. Crit Care. 2005;9 Suppl 5:S15–24.

    Article  PubMed  Google Scholar 

  169. Dutton RP, McCunn M, Hyder M, et al. Factor VIIa for correction of traumatic coagulopathy. J Trauma. 2004;57:709–19.

    Article  PubMed  CAS  Google Scholar 

  170. Boehlen F, Morales MA, Fontana P, Ricou B, Irion O, de Moerloose P. Prolonged treatment of massive postpartum haemorrhage with recombinant factor VIIa: case report and review of the literature. BJOG. 2004;111:284–7.

    Article  PubMed  Google Scholar 

  171. Deveras RA, Kessler CM. Recombinant factor VIIa (rF-VIIa) successfully and rapidly corrects the ­excessively high international normalized ratios (INR)and prothrombin times induced by warfarin [abstract]. Blood. 2000;96:638a.

    Google Scholar 

  172. Deveras RA, Kessler CM. Reversal of warfarin-induced excessive anticoagulation with recombinant human factor VIIa concentrate. Ann Intern Med. 2002;137:884–8.

    PubMed  CAS  Google Scholar 

  173. Bernstein DE, Jeffers L, Erhardtsen E, Reddy KR, Glazer S, Squiban P, et al. Recombinant factor VIIa corrects prothrombin time in cirrhotic patients: a preliminary study. Gastroenterology. 1997;113:1930–7.

    Article  PubMed  CAS  Google Scholar 

  174. Lisman T, Leebeek FW, Meijer K, Van Der Meer J, De Groot PG. Recombinant factorVIIa improves clot formation but not fibrolytic potential in patients with cirrhosis and during liver transplantation. Hepatology. 2002;35:616–21.

    Article  PubMed  Google Scholar 

  175. Kalicinski P, Kaminski A, Drewniak T, Ismail H, Szymczak M, Markiewicz M, et al. Quick correction of hemostasis in two patients with fulminant liver failure undergoing liver transplantation by recombinant activated factorVII. Transplant Proc. 1999;31:378–9.

    Article  PubMed  CAS  Google Scholar 

  176. Hendriks HG, Meijer K, de Wolf JT, Klompmaker IJ, Porte RJ, deKam PJ, et al. Reduced transfusion requirements by recombinant factor VIIa in orthotopic liver transplantation: a pilot study. Transplantation. 2001;71:402–5.

    Article  PubMed  CAS  Google Scholar 

  177. Surudo T, Wojcicki M, Milkiewicz P, Czuprynska M, Lubikowski J, Jarosz K, et al. Rapid correction of prothrombin time after low-dose recombinant ­factor VIIa in patients undergoing orthotopic liver transplantation. Transplant Proc. 2003;35: 2323–5.

    Article  PubMed  CAS  Google Scholar 

  178. Niemann CU, Behrends M, Quan D, Eilers H, Gropper MA, Roberts JP, et al. Recombinant factor VIIa reduces transfusion requirements in liver transplant patients with high MELD scores. Transfus Med. 2006;16:93–100.

    Article  PubMed  CAS  Google Scholar 

  179. Kalicinski P, Markiewicz M, Kamin´ski A, Laniewski P, Ismail H, Drewniak T, et al. Single pretransplant bolus of recombinant activated factor VII ameliorates influence of risk factors for blood loss during orthotopic liver transplantation. Pediatr Transplant. 2005;9:299–304.

    Article  PubMed  CAS  Google Scholar 

  180. Planinsic RM, van der Meer J, Testa G, Grande L, Candela A, Porte RJ, et al. Safety and efficacy of a single bolus administration of recombinant factor VIIa in liver transplantation due to chronic liver disease. Liver Transpl. 2005;11:895–900.

    Article  PubMed  Google Scholar 

  181. Lodge JP, Jonas S, Jones RM, Olausson M, MirPallardo J, Soefelt S, et al. Efficacy and safety of repeated perioperative doses of recombinant factor VIIa in liver transplantation. Liver Transpl. 2005;11:973–9.

    Article  PubMed  Google Scholar 

  182. Pugliese F, Ruberto F, Summonti D, Perrella S, Cappannoli A, Tosi A, et al. Activated recombinant factor VII in orthotopic liver transplantation. Transplant Proc. 2007;39:1883–5.

    Article  PubMed  CAS  Google Scholar 

  183. Vincent JL, Rossaint R, Riou B, Ozier Y, Zideman D, Spahn DR. Recommendations on the use of recombinant activated factor VII as an adjunctive treatment for massive bleeding—a European perspective. Crit Care. 2006;10:R120.

    Article  PubMed  Google Scholar 

  184. Berrevoet F, de Hemptinne B. Use of topical hemostatic agents during liver resection. Dig Surg. 2007;24:288–93.

    Article  PubMed  CAS  Google Scholar 

  185. Heaton N. Advances and methods in liver surgery: haemostasis. Eur J Gastroenterol Hepatol. 2005;17 Suppl 1:S3–12.

    Article  PubMed  Google Scholar 

  186. Chapman WC, Clavien PA, Fung J, et al. Effective control of hepatic bleeding with a novel collagen-based composite combined with autologous plasma: results of a randomized controlled trial. Arch Surg. 2000;135:1200–4.

    Article  PubMed  CAS  Google Scholar 

  187. Carless PA, Henry DA, Anthony DM. Fibrin sealant use for minimising peri-operative allogeneic blood transfusion. Cochrane Database Syst Rev. 2003;1:CD004171.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun J. Sanyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kappus, M.R., Sanyal, A.J. (2012). Coagulopathy: Pathophysiology, Evaluation, and Treatment. In: Wagener, G. (eds) Liver Anesthesiology and Critical Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5167-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5167-9_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5166-2

  • Online ISBN: 978-1-4614-5167-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics