Skip to main content

Following RNA Folding From Local and Global Perspectives

  • Chapter
  • First Online:
Biophysics of RNA Folding

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 3))

Abstract

A significant driving force to RNA folding is the localized neutralization of the highly electronegative charge of the phosphodiester backbone by cations. Thus, the folding of RNA molecules into biologically active three-dimensional structures is marked by global compaction resulting from this charge neutralization and the formation of the numerous local noncovalent interactions that stabilize discrete structures. Understanding the relative contribution to folding of sequence nonspecific charge neutralization and formation and breaking of sequence specific noncovalent interactions are critical to understanding molecular mechanisms of RNA folding. This article explores the concomitant use of techniques that track global and local changes in RNA conformation in order to partition nonspecific and specific contributions to the folding process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bachu R, Padlan FC, Rouhanifard S, Brenowitz M, Schlatterer JC (2011) Monitoring equilibrium changes in RNA structure by ‘peroxidative’ and ‘oxidative’ hydroxyl radical footprinting. J Vis Exp 56:e3244

    PubMed  Google Scholar 

  • Bernado P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007) Structural Characterization of Flexible Proteins Using Small-Angle X-ray Scattering. J Am Chem Soc 129:5656–5664

    Article  PubMed  CAS  Google Scholar 

  • Brenowitz M, Senear DF, Shea MA, Ackers GK (1986a) “Footprint” titrations yield valid thermodynamic isotherms. Proc Natl Acad Sci USA 83:8462–8466

    Article  PubMed  CAS  Google Scholar 

  • Brenowitz M, Senear DF, Shea MA, Ackers GK (1986b) Quantitative DNase footprint titration: a method for studying protein-DNA interactions. Methods Enzymol 130:132–181

    Article  PubMed  CAS  Google Scholar 

  • Brenowitz M, Senear D, Jamison E, Dalma-Weiszhausz DD (1993) Quantitative DNase I Footprinting. In: Revzin A (ed) Footprinting of nucleic acid-protein complexes. Academic Press, New York, pp 1–43

    Google Scholar 

  • Celander DW, Cech TR (1990) Iron(II)-ethylenediaminetetraacetic acid catalyzed cleavage of RNA and DNA oligonucleotides: similar reactivity toward single- and double- stranded forms. Biochemistry 29:1355–1361

    Article  PubMed  CAS  Google Scholar 

  • Das R, Laederach A, Pearlman SM, Herschlag D, Altman RB (2005) SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA 11:344–354

    Article  PubMed  CAS  Google Scholar 

  • Doherty EA, Doudna JA (1997) The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core. Biochemistry 36:3159–3169

    Article  PubMed  CAS  Google Scholar 

  • Jones CD, Schlatterer JC, Brenowitz M, Pollack L (2011) A microfluidic device that generates hydroxyl radicals to probe the solvent accessible surface of nucleic acids. Lab Chip 11:3458–3464

    Article  PubMed  CAS  Google Scholar 

  • Kwok LW, Shcherbakova I, Lamb JS, Park HY, Andresen K, Smith H, Brenowitz M, Pollack L (2006) Concordant exploration of the kinetics of RNA folding from global and local perspectives. J Mol Biol 355:282–293

    Article  PubMed  CAS  Google Scholar 

  • Latham JA, Cech TR (1989) Defining the inside and outside of a catalytic RNA molecule. Science 245:276–282

    Article  PubMed  CAS  Google Scholar 

  • Laederach A, Das R, Vicens Q, Pearlman SM, Brenowitz M, Herschlag D, Altman RB (2008) Semiautomated and rapid quantification of nucleic acid footprinting and structure mapping experiments. Nat Protoc 3:1395–1401

    Article  PubMed  CAS  Google Scholar 

  • Laederach A, Shcherbakova I, Jonikas MA, Altman RB, Brenowitz M (2007) Distinct contribution of electrostatics, initial conformational ensemble, and macromolecular stability in RNA folding. Proc Natl Acad Sci USA 104:7045–7050

    Article  PubMed  CAS  Google Scholar 

  • Laederach A, Shcherbakova I, Liang MP, Brenowitz M, Altman RB (2006) Local kinetic measures of macromolecular structure reveal partitioning among multiple parallel pathways from the earliest steps in the folding of a large RNA molecule. J Mol Biol 358:1179–1190

    Article  PubMed  CAS  Google Scholar 

  • Lipfert J, Doniach S (2007) Small-angle X-ray scattering from RNA, proteins, and protein complexes. Annu Rev Biophys Biomol Struct 36:307–327

    Article  PubMed  CAS  Google Scholar 

  • MacGregor IK, Anderson AL, Laue TM (2004) Fluorescence detection for the XLI analytical ultracentrifuge. Biophys Chem 108:165–185

    Article  PubMed  CAS  Google Scholar 

  • Martin J, Simmons K, Laederach A (2009) Exhaustive Enumeration of Kinetic Model Topologies for the Analysis of Time-Resolved RNA Folding. Algorithms 2(1):200–214

    Article  PubMed  CAS  Google Scholar 

  • Mitra S, Shcherbakova IV, Altman RB, Brenowitz M, Laederach A (2008) High-throughput single-nucleotide structural mapping by capillary automated footprinting analysis. Nucleic Acids Res 36:e63

    Article  PubMed  Google Scholar 

  • Petri V, Brenowitz M (1997) Quantitative nucleic acids footprinting: thermodynamic and kinetic approaches. Curr Opin Biotechnol 8:36–44

    Article  PubMed  CAS  Google Scholar 

  • Pollack L (2011) Time resolved SAXS and RNA folding. Biopolymers 95:543–549

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Guerrero JM, Garcia JJ, Acuna-Castroviejo D (1998) Reactive oxygen intermediates, molecular damage, and aging. Relation to melatonin. Annals of the New York Academy of Sciences 854:410–424

    Article  PubMed  CAS  Google Scholar 

  • Sclavi B, Sullivan M, Chance MR, Brenowitz M, Woodson SA (1998) RNA folding at millisecond intervals by synchrotron hydroxyl radical footprinting. Science 279:1940–1943

    Article  PubMed  CAS  Google Scholar 

  • Sclavi B, Woodson S, Chance MR, Brenowitz M (1997) Time-resolved synchrotron X-ray “footprinting”, a new approach to the study of nucleic acid structure and function: application to protein-DNA interactions and RNA folding. J Mol Biol 266:144–159

    Article  PubMed  CAS  Google Scholar 

  • Shcherbakova I, Brenowitz M (2008) Monitoring structural changes in nucleic acids with single residue spatial and millisecond time resolution by quantitative hydroxyl radical footprinting. Nat Protoc 3:288–302

    Article  PubMed  CAS  Google Scholar 

  • Shcherbakova I, Gupta S, Chance MR, Brenowitz M (2004) Monovalent Ion-mediated Folding of the Tetrahymena thermophila Ribozyme. J Mol Biol 342:1431–1442

    Article  PubMed  CAS  Google Scholar 

  • Shcherbakova I, Mitra S, Beer RH, Brenowitz M (2006a) Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA,RNA and proteins. Nucleic Acids Res 34:e48

    Article  PubMed  Google Scholar 

  • Shcherbakova I, Mitra S, Beer RH, Brenowitz M (2006b) Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Research 34:e48

    Article  PubMed  Google Scholar 

  • Shcherbakova I, Mitra S, Beer RH, Brenowitz M (2008a) Following molecular transitions with single residue spatial and millisecond time resolution. Methods Cell Biol 84:589–615

    Article  PubMed  CAS  Google Scholar 

  • Shcherbakova I, Mitra S, Laederach A, Brenowitz M (2008b) Energy barriers, pathways, and dynamics during folding of large, multidomain RNAs. Curr Opin Chem Biol 12:655–666

    Article  PubMed  CAS  Google Scholar 

  • Shcherbakova I, Mitra S (2009) Hydroxyl-radical footprinting to probe equilibrium changes in RNA tertiary structure. Methods Enzymol 468:31–46

    Article  PubMed  CAS  Google Scholar 

  • Schlatterer JC, Kwok LW, Lamb JS, Park HY, Andresen K, Brenowitz M, Pollack L (2008) Hinge stiffness is a barrier to RNA folding. J Mol Biol 379:859–870

    Article  PubMed  CAS  Google Scholar 

  • Su LJ, Brenowitz M, Pyle AM (2003) An alternative route for the folding of large RNAs: apparent two-state folding by a group II intron ribozyme. J Mol Biol 334:639–652

    Article  PubMed  CAS  Google Scholar 

  • Svergun DI, Koch MHJ (2003) Small-angle scattering studies of biological macromolecules in solution. Repo Progr in Phy 66:1735–1782

    Article  CAS  Google Scholar 

  • Swisher JF, Su LJ, Brenowitz M, Anderson VE, Pyle AM (2002) Productive Folding to the Native State by a Group II Intron Ribozyme. J Mol Biol 315:297–310

    Article  PubMed  CAS  Google Scholar 

  • Takamoto K, Das R, He Q, Doniach S, Brenowitz M, Herschlag D, Chance MR (2004) Principles of RNA compaction: insights from the equilibrium folding pathway of the p4-p6 RNA domain in monovalent cations. J Mol Biol 343:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Tullius TD, Dombroski BA (1985) Iron(II) EDTA used to measure the helical twist along any DNA molecule. Science 230:679–681

    Article  PubMed  CAS  Google Scholar 

  • Tullius TD, Dombroski BA (1986) Hydroxyl radical “footprinting”: high-resolution information about DNA- protein contacts and application to lambda repressor and Cro protein. Proc Natl Acad Sci USA 83:5469–5473

    Article  PubMed  CAS  Google Scholar 

  • Uchida T, Takamoto K, He Q, Chance MR, Brenowitz M (2003) Multiple monovalent ion-dependent pathways for the folding of the L-21 Tetrahymena thermophila ribozyme. J Mol Biol 328:463–478

    Article  PubMed  CAS  Google Scholar 

  • Wojcik M, Burzynska-Pedziwiatr I, Wozniak LA (2010) A review of natural and synthetic antioxidants important for health and longevity. Curr Med Chem 17:3262–3288

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Brenowitz or Lois Pollack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brenowitz, M., Pollack, L. (2013). Following RNA Folding From Local and Global Perspectives. In: Russell, R. (eds) Biophysics of RNA Folding. Biophysics for the Life Sciences, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4954-6_10

Download citation

Publish with us

Policies and ethics