Skip to main content

Arbuscular Mycorrhizal Fungi for Jatropha Production

  • Chapter
  • First Online:
Jatropha, Challenges for a New Energy Crop

Abstract

Arbuscular mycorrhizal fungi (AMF) are keystone mutualists inhabiting roots of most plants including the majority of oil crops under cultivation. Therefore, sustainable yield of Jatropha (Jatropha curcas L.) in cultivation is likely to benefit from the inclusion of AMF in crop management cycles. Studies undertaken on acid and alkaline soils in a range of site conditions (productive cropping land, degraded land, mine spoil) indicate close association between Jatropha and AMF since roots were often heavily colonized by AMF in the field. Although a diverse range of AMF genera and species have been identified in the rhizosphere of Jatropha, not all are likely to be effective for sustainable production of Jatropha in plantations. For example, of 34 species of AMF in the rhizosphere of Jatropha in Thailand, only a few species were able to be trapped by Jatropha seedlings. Techniques for assessing the need for inoculation and approaches for inoculum production are discussed. The role of AMF in alleviating stresses is discussed in relation to (1) nutrient and water constraints that are likely to be the main factors limiting the production of Jatropha in many regions of the world and (2) the presence of heavy metals and salinity that will also be challenging for this crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMF:

Arbuscular mycorrhizal fungi

dS m−1 :

Deci Siemens per meter

EC:

Electrical conductivity

ha:

Hectare

K:

Potassium

kg:

Kilogram

N:

Nitrogen

NaCl:

Sodium chloride

P:

Phosphorus

References

  • Amerian MR, Stewart WS (2001) Effect of two species of arbuscular mycorrhizal fungi on growth, assimilation and leaf water relations in maize (Zea mays). Aspects Appl Biol 63:1–6

    Google Scholar 

  • Balota EL, Machineski O, Truber PV, Scherer A, de Souza FS (2011) Physic nut plants present high mycorrhizal dependency under conditions of low phosphate availability. Braz J Plant Physiol 23:33–44

    Article  Google Scholar 

  • Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballesta MC, Carvajal M et al (2012) Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot. doi:10.1093/aob/mcs007

  • Behera SK, Srivastava P, Tripathi R, Singh JP, Singh N (2010) Evaluation of plant performance of Jatropha curcas L. under different agro-practices for optimizing biomass – a case study. Biomass Bioenergy 34:30–41

    Article  Google Scholar 

  • Boomsma CR, Vyn TJ (2008) Maize drought tolerance: potential improvements through arbuscular mycorrhizal symbiosis? Field Crop Res 108:14–31

    Article  Google Scholar 

  • Borde M, Dudhane M, Jite P (2011) Growth photosynthetic and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glaucum) crop under salinity stress condition. Crop Prot 30:265–271

    Article  CAS  Google Scholar 

  • Borkowska B (2002) Growth and photosynthetic activity of micropropagated strawberry plants inoculated with endomycorrhizal fungi (AMF) and growing under drought stress. Acta Physiol Plant 24:365–370

    Article  Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture, vol 32. ACIAR Monograph, Canberra

    Google Scholar 

  • Charoenpakdee S (2009) Biodiversity and beneficial effect of arbuscular mycorrhizal fungi associated with physic nut (Jatropha curcas L.), a potential biofuel plant in Thailand, Ph.D. thesis, Chiang Mai University, Faculty of Science, Thailand

    Google Scholar 

  • Charoenpakdee S, Phosri C, Dell B, Lumyong S (2010a) The mycorrhizal status of indigenous arbuscular mycorrhizal fungi of physic nut (Jatropha curcas) in Thailand. Mycosphere 1:167–181

    Google Scholar 

  • Charoenpakdee S, Phosri C, Dell B, Choonluechanon S, Lumyong S (2010b) Compatible arbuscular mycorrhizal fungi of Jatropha curcas and spore multiplication using cereal crops. Mycosphere 1:195–204

    Google Scholar 

  • Corkidi L, Evans M, Bohn J (2008) An introduction to propagation of arbuscular mycorrhizal fungi in pot cultures for inoculation of native plant nursery stock. Native Plants J 9:29–38

    Article  Google Scholar 

  • Daei G, Ardekani MR, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. Plant Physiol 166:617–625

    Article  CAS  Google Scholar 

  • Davies TF, Calderon CM, Huaman Z (2005) Influence of arbuscular mycorrhizae indigenous to Peru and a flavonoid in growth, yield, and leaf elemental concentration of Yungay potatoes. Hort Sci 40:381–385

    Google Scholar 

  • Desai S, Narayanaiah C, Kumari CK, Reddy MS, Gnanamanickam SS, Rao GR et al (2007) Seed inoculation with Bacillus spp. improves seedling vigour in oil-seed plant Jatropha curcas L. Biol Fertil Soils 44:229–234

    Article  Google Scholar 

  • Enteshari S, Hajbagheri S (2011) Effects of mycorrhizal fungi on some physiological characteristics of salt stressed Ocimun basillicum L. Iranian J Plant Physiol 1:215–222

    Google Scholar 

  • Feldmann F, Hutter I, Schneider C (2008) Best production practice of arbuscular mycorrhizal inoculum. Federal Research Centre for Agriculture and Forestry, Messeweg

    Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  PubMed  CAS  Google Scholar 

  • Fisher JB, Jayachandran K (1999) Root structure and arbuscular mycorrhizal colonization of the palm Serenoa repens under field conditions. Plant Soil 217:229–241

    Article  Google Scholar 

  • Francis G, Edinger R, Becker K (2005) A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: need, potential and perspectives of Jatropha plantations. Nat Res Forum 29:12–24

    Article  Google Scholar 

  • Fritz M, Jakobsen I, Lyngkjaer MF, Thordal-Christensen H, Kühnemann L (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16:413–419

    Article  PubMed  Google Scholar 

  • Gera-Hol WH, Cook R (2005) An overview of arbuscular mycorrhizal fungi-nematode interactions. Basic Appl Ecol 6:489–503

    Article  Google Scholar 

  • Hartwig UA, Wittmann P, Braun R, Hartwig-Räz B, Jansa J, Mozafar A et al (2002) Arbuscular Mycorrhiza infection enhances the growth response of Lolium perenne to elevated atmospheric pCO2. J Exp Bot 53:1207–1213

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Narutaki A, Sawada K, Aikawa J, Matsumoto I, Kadoya K (1997) Growth stimulatory substances for vesicular-arbuscular mycorrhizal fungi in Bahia grass (Paspalum notatum Flugge.) roots. Plant Soil 196:301–304

    Article  CAS  Google Scholar 

  • Jankong P, Visoottiviseth P (2008) Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Chemosphere 72:1092–1097

    Article  PubMed  CAS  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Mini review microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Micro Ecol 48:1–13

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere- a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jothi G, Sundarababu R (2002) Peroxidase and chitinase activities in brinjal inoculated with Meloidogyne incognita (Kofoid & White) Chitwood and endomycorrhiza. Biol Control 16:161–164

    Google Scholar 

  • Kamalvanshi M, Kumar A, Jha A, Dhyani SK (2011) Occurrence of arbuscular mycorrhizal fungi in rhizosphere of Jatropha curcas L. in arid and semi arid regions of India. Indian J Microbiol. doi:10.1007/s12088-011-0224-0

  • Kaya C, Higgs D, Kirnak H, Tas I (2003) Mycorrhizal colonization improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-watered and water stressed conditions. Plant Soil 253:287–292

    Article  CAS  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6

    Article  CAS  Google Scholar 

  • Khalvati MA, Hu Y, Mozafar A, Schmidhalter U (2005) Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biol 7:706–712

    Article  PubMed  CAS  Google Scholar 

  • Khan AG (2008) Microbial dynamics in the mycorrhizosphere with special reference to arbuscular mycorrhizae. In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interaction: strategies and techniques to promote plant growth. Wiley-VCH, Weinheim, pp 245–256

    Google Scholar 

  • Kumar A, Sharma S, Mishra S (2010) Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation, and mycorrhizal dependency of Jatropha curcas L. J Plant Growth Regul 29:297–306

    Article  CAS  Google Scholar 

  • Leye EHM, Ndiaye M, Ndiaye F, Diallo B, Sarr AS, Diouf M et al (2009) Effet de la mycorhization sur la croissance et le développement de Jatropha curcas L. Rev Energ Renew 12:269–278

    Google Scholar 

  • Li B, Ravnskov S, Xie G, Larsen J (2007) Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhiza-associated bacteria from the genus Parnibacillus. J Int Organ Biol Control 52:863–875

    Google Scholar 

  • Liu R, Wang F (2003) Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza 13:123–127

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Lui M, Mao Y, Shen L (2007) Effect of vesicular-arbuscular mycorrhizae on the drought resistance of wild Jujube (Zizyphs spinosus Hu) seedlings. Frontiers Agric China 1:468–471

    Article  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Monzon A, Azcon R (1996) Relevance of mycorrhizal fungal origin and host plant genotype to inducing growth and nutrient uptake in Medicago species. Agri Ecosys Environ 60:9–15

    Article  Google Scholar 

  • Mukerji KG, Ciancio A (2007) Mycorrhizae in the integrated pest and disease. Section 2. In: Mukerji KG, Ciancio A (eds) Management of general concepts in integrated pest and disease management. Springer, Netherlands, pp 245–266

    Chapter  Google Scholar 

  • Nanda S, Abraham J (2011) Impact of heavy metals on the rhizosphere microflora of Jatropha multifida and their effective remediation. Afr J Biotechnol 10:11948–11955

    CAS  Google Scholar 

  • Nehra V, Saharan BS (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Öpik M, Saks Ãœ, Kennedy J, Daniell T (2008) Global diversity patterns of arbuscular mycorrhizal fungi-community composition and links with functionality. In: Verma A (ed) Mycorrhiza, 3rd edn. Springer, Germany, pp 274–317

    Google Scholar 

  • Oyekanmi EO, Coyne DL, Fagade OE, Osonubi O (2007) Improving root-knot nematode management on two soybean genotypes through the application of Bradyrhizobium japonicum, Trichoderma pseudokoningii and Glomus mosseae in full factorial combinations. Crop Prod 26:1006–1012

    Article  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–765

    Article  PubMed  CAS  Google Scholar 

  • Pinior A, Grunewaldt-Stöcker G, Von Alten H, Strasser RJ (2005) Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza 15:596–605

    Article  PubMed  CAS  Google Scholar 

  • Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139

    Article  PubMed  CAS  Google Scholar 

  • Pratap CR, Potty VP (2011) Initiation of hairy roots from Canavalia sp. using Agrobacterium rhizogenes 15834 for the co-cultivation of Arbuscular mycorrhizal fungi, Glomus microcarpum. J Agri Tech 7:235–245

    Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt tolerance of Vicia faba plants. Afr J Biotechnol 4:210–222

    CAS  Google Scholar 

  • Rinaldelli E, Mancuso S (1996) Response of young mycorrhizal and non-mycorrhizal plants of olive tree (Olea europaea L.) to saline conditions. I. Short term electrophysiological and long term vegetative salt effects. Adv Hortic Sci 10:126–134

    Google Scholar 

  • Ruiz-Lozano JM, Azcon R, Gomez M (1996) Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98:767–772

    Article  CAS  Google Scholar 

  • Sannazzaro AI, Echeverría M, Albertó EO, Ruiz OA, Menéndez AB (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Biochem 45:39–46

    Article  PubMed  CAS  Google Scholar 

  • Scheloske S, Maetz M, Schneider T, Hildenbrandt U, Bothe H, Povh B (2004) Elemental distribution in mycorrhizal and non mycorrhizal roots of the halophyte Aster tripolium determined by proton induced X-ray emission. Protoplasma 223:183–189

    Article  PubMed  CAS  Google Scholar 

  • Schreiner RP (2007) Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of ‘Pinot noir’ (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Appl Soil Ecol 36:205–215

    Article  Google Scholar 

  • Schüßler A, Walker C, Gamper HA (2009) Diversispora celata sp. nov: molecular ecology and phylotaxonomy of an inconspicuous arbuscular mycorrhizal fungus. New Phytol 182:495–506

    Article  PubMed  Google Scholar 

  • Setiadi Y (2002) Mycorrhizal inoculum production technique for land rehabilitation. J Manaj Hutan Trop 8:52–64

    Google Scholar 

  • Siddiqui ZA, Akhtar MS, Futai K (2008) Mycorrhizae: sustainable agriculture and forestry. Springer, Germany

    Book  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhizal management in tropical agrosystems. GTZ, Federal Republic of Germany

    Google Scholar 

  • Silpachai S, Mala T, Phaosang T (2009) Effect of Glomus aggregatum, organic and phosphorus fertilizers on the second year growth and yield of physic nut (Jatropha curcas L.) cv. India. Kamphaengsean Acad J 7:10–24

    Google Scholar 

  • Singh AK, Jamaluddin (2011) Status and diversity of arbuscular mycorrhizal fungi and its role in natural regeneration on limestone mined spoils. Biodiversitas 12:107–111

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Subramanian KS, Santhanakrishnan P, Balasubramanion P (2006) Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hortic 107:245–253

    Article  Google Scholar 

  • Sylvia DM, Hartel P, Fuhrmann J, Zuberer D (2005) Principles and applications of soil microbiology. Pearson Prentice Hall, New Jersey

    Google Scholar 

  • Talavera M, Itou K, Mizukubo T (2001) Reduction of nematode damage by root colonization with arbuscular mycorrhiza (Glomus spp.) in tomato-Meloidogyne incognita (Tylenchida: Meloidogynidae) and carrot-Pratylenchus penetrans (Tylenchida: Pratylenchidae) pathosystems. Appl Ent Zool 36:387–392

    Article  Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang F (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26:143–148

    Article  Google Scholar 

  • Trappe JM (2005) A.B. Frank and mycorrhizae: the challenge to evolutionary and ecologic theory. Mycorrhiza 15:277–281

    Article  PubMed  Google Scholar 

  • Turkmen O, Sensoy S, Demir S, Erdinc C (2008) Effects of two different AMF species on growth and nutrient content of pepper seedlings grown under moderate salt stress. Afr J Biotechnol 7:392–396

    CAS  Google Scholar 

  • Ultra VU (2010) Contribution of arbuscular mycorrhiza inoculation on the growth and phosphorus nutrition of jatropha (Jatropha curcas) in degraded upland soils of Samar, Philippines. In: 19th world congress of soil science, soil solutions for a changing world, Brisbane, 1–6 Aug 2010, p 67–70

    Google Scholar 

  • van der Heijden MGA, Sanders IR (2003) Mycorrhizal ecology, ecological studies, 2nd edn. Springer, Germany

    Google Scholar 

  • van Rooyen M, Valentine A, Archer E (2004) Arbuscular mycorrhizal colonisation modifies the water relations of young transplanted grapevines (Vitis). S Afr J Enol Vitic 25:37–42

    Google Scholar 

  • Veresoglou SD, Sen R, Mamolos AP, Veresoglou DS (2011) Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils. J Ecol 9:1339–1349

    Google Scholar 

  • Verma A (2008) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, Berlin

    Google Scholar 

  • Wu Q, Xia R (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  PubMed  CAS  Google Scholar 

  • Zhu YG, Laidlaw AS, Christie P, Hammond MER (2000) The specificity of arbuscular mycorrhizal fungi in perennial ryegrass-white clover pasture. Agri Ecos Environ 77:211–218

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supattra Charoenpakdee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Charoenpakdee, S., Lumyong, S., Dell, B. (2012). Arbuscular Mycorrhizal Fungi for Jatropha Production. In: Carels, N., Sujatha, M., Bahadur, B. (eds) Jatropha, Challenges for a New Energy Crop. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4806-8_13

Download citation

Publish with us

Policies and ethics