Skip to main content

Mycorrhizae In The Integrated Pest And Disease Management

  • Chapter
General Concepts in Integrated Pest and Disease Management

Part of the book series: Integrated Management of Plants Pests and Diseases ((IMPD,volume 1))

Abstract

. Plant diseases cause serious losses in crop production and pesticide applications are currently the main way deployed for control. Due to severe environmental problems, achieving a sustainable agriculture will require avoidance of chemical pesticides /fungicides. Mycorrhizal fungi provide an effective alternative method of disease control, especially for those pathogens which affect below ground plant organs. In mycorrhizal fungi lies an enormous potential for use as biocontrol agents for soil- and root-borne diseases. Some species are also effective control agents against phytoparasitic nematodes and others are also reported as effective for control of leaf spot diseases. For efficient and persistent disease management the need is to evaluate the mycorrhizal symbionts in the natural system under field conditions. The use of mixed inocula of mycorrhizal symbionts can be more effective and yield better results than the use of a single species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Altieri, M. A. (1994). Sustainable agriculture. Encyclopedia of Agricultural Science, 4, 239-247.

    Google Scholar 

  • Andrade, G., Mihara, K. L., Linderman, R. G. & Bethlenfalvay, G. J. (1997). Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant and Soil 192, 71-79.

    CAS  Google Scholar 

  • Andrade, G., Mihara, K. L., Linderman, R. G. & Bethlenfalvay, G. J. (1998). Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant and Soil, 202, 89-96.

    CAS  Google Scholar 

  • Artursson, V., & Jansson, J. K. (2003). Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Applied and Environmental Microbiology 69, 6208-6215.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Artursson, V., Finlay, R. D., & Jansson, J. K. (2006). Interactions between arbuscular mycorrhizal fungiu and bacteria and their potential forstimulating plant growth. Environmental Microbiology 8, 1-10.

    CAS  PubMed  Google Scholar 

  • Atkinson, D., Baddeley, J., Goicoechea, N., Green, J., Sanchez- Diaz, M. & Watson, C. A. (2002). AMF in low input agriculture. In: Gianinazzi, S. & Schuepp, H. (Eds.). Mycorrhizal technology: from genes to bioproducts-achievements and hurdles in arbuscular mycorrhizal research. Birkhauser-Verlag, Basel, Switzerland, pp 211-222.

    Google Scholar 

  • Augé R. M. (2001). Water relations, drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3-42.

    Google Scholar 

  • Azcó-Aguilar, C. & Barea, J. M. (1996). Arbuscular mycorrhizas and biological control of soil-borne plant pathogens-an overview of the mechanisms involved. Mycorrhiza, 6, 457-464.

    Google Scholar 

  • Bansal, M. & Mukerji, K. G. (1994). Positive correlation between root exudation and VAM induced changes in rhizosphere mycoflora. Mycorrhiza, 5, 39-44.

    Google Scholar 

  • Bansal, M. & Mukerji, K. G. (1996). Root exudates in rhizosphere biology. In: Mukerji K. G. & Singh V. P. (eds.) Concepts in applied microbiology and biotechnology. Aditya Book, New Delhi, 98-120.

    Google Scholar 

  • Bansal, M., Chamola, B. P., Sarwar, N. & Mukerji, K. G. (2000). Mycorrhizorphere: interactions between rhizosphere microflora and VAM fungi. In: Mukerji, K. G., Chamola, B.P. & Singh, J. (eds.). Mycorrhizal biology. Kluwer Academic/Plenum Publishers, New York, 143-152.

    Google Scholar 

  • Barea, J. M., Tobar, R. M., Azcón, R. & Azcón-Aguilar, C. (1993). Mycorrhizas in the IMPACT project: action/concept approaches and worktasks/methodologies, abstr. 4.4.12. In: Final Sectorial Meeting on Biosafety and First Sectorial Meeting on Microbial Ecology. BIOTECH Programme. European Commission. Granada, Spain.

    Google Scholar 

  • Barea, J. M. & Jefferies, P. (1995). Arbuscular mycorrhizas in sustainable plant-soil systems. In Hock, B. &Varma, A., (eds.) Mycorrhizae: function, molecular biology and biotechnology, Springer, Berlin, Heidelberg, New York, 521-560

    Google Scholar 

  • Barea, J. M. (1997). Mycorrhiza-bacteria interactions on plant growth promotion. In: Ogoshi, A., Kobayashi, K., Homma, Y., Kodama, F., Kondo, N., & Akino, S.(eds). Plant growth promoting rhizobacteria. OECD Press, Paris, France, 150-158.

    Google Scholar 

  • Barea, J. M., Andrade, G., Bianciotto, V., Dowling, D., Lohrke, S., Bonfante, P., O’Gara, F. & Azcon-Aguilar, C. (1998). Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Applied and Environmental Microbiology, 64, 2304-2307.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barea, J. M., Azcon, R., & Azcón-Aguilar, C. (2002). Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek, 81, 343-351.

    CAS  PubMed  Google Scholar 

  • Benitez, T., Rincon, A. M., Limon, M.C., & Codon, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7, 249-260.

    CAS  PubMed  Google Scholar 

  • Bestel-Corre, G., Dumas-Gaudot, E., Gianinazzi-Pearson, V. & Gianinazzi, S. (1991). Mycorrhiza related chitinase and chitosanase activity isoforms in Medicago truncatula Gaertn. Symbiosis, 32, 173-194.

    Google Scholar 

  • Bestel-Corre, G., Dumas-Gaudot, E., Gianinazzi-Pearson, V. & Gianinazzi, S. (2002). Mycorrhiza related chitinase and chitosanase activty isoforms in Medicago truncatula Gaertn. Symbiosis, 32, 173-194.

    CAS  Google Scholar 

  • Bianciotto, V., Bandi, C., Minerdi, D., Sironi, M., Tichy, H.V. & Bonfante, P. (1996a). An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Applied and Environmental Microbiology, 62, 3005-3010.

    CAS  Google Scholar 

  • Bianciotto, V., Minerdi, D., Perotto, S., & Bonfante, P. (1996b). Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma, 193,123-131.

    Google Scholar 

  • Bianciotto, V., Lumini, E., Lanfranco, L., Minerdi, D., Bonfante, P. & Perotto, S. (2000). Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Applied and Environmental Microbiology, 66, 4503-4509.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bianciotto, V., Andreotti, S., Balestrini, R., Bonfante, P. & Resotto, S. (2001). Mucoid Mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Molecular Plant-Microbe Interactions, 14, 255-260.

    CAS  PubMed  Google Scholar 

  • Boddey, R. M., Urquiaga, S., Reis, & V. Dobereiner, J. (1991). Biological nitrogen-fixation associated with sugar-cane. Plant and Soil, 137, 111-117.

    Google Scholar 

  • Brock, A.V. & Vanderleyden, J. (1995). Genetics of Azospirillum-plant root association. Critical Review of Plant Sciences, 44, 445-466.

    Google Scholar 

  • Budi, S. W., Van Tuinen, D., Martinotti, G. & Gianinazzi, S. (1999). Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Applied and Environmental Microbiology, 65, 5148-5150.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burke, D. J., Hammerlynck, E. P. & Hahn, D. (2002). Interactions among plant species and microorganisms in salt marsh sediments. Applied and Environmental Microbiology, 68, 1157-1164.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calvet, C., Barea, J. M. & Pera, J. (1992). In vitro interactions between the vesicular-arbuscular mycorrhizal fungus Glomus mosseae and some saprophytic fungi isolated from organic substrates.Soil Biology & Biochemistry, 24, 775-780.

    Google Scholar 

  • Calvet, C., Camprubi, A., Estaun, V., Sabadell, S., Aguado, A., Ferrer, I., et al. (2000). Integration of arbuscular mycorrhizas and other beneficial soil microbiota in horticultivar cropping systems. In: Cost Action 838 Meeting: Managing arbuscular mycorrhizal fungi for improving soil quality and plant health in agriculture. Santiago de Compostela, Galicia, Spain, pp 8-20.

    Google Scholar 

  • Calvet, C., Pinochet, J., Hernández-Dorrego, A., Estaún, V., & Camprubí, A. (2001). Field microplot performance of the peach-almond hybrid GF-677 after inoculation with arbuscular mycorrhizal fungi in a replant soil infested with root-knot nematodes. Mycorrhiza, 10, 295-300.

    Google Scholar 

  • Carling, D. E., Roncadori, R. W., & Hussey, R. S. (1996). Interactions of arbuscular mycorrhizae, Meloidogyne arenaria, and phosphorus fertilization on peanut. Mycorrhiza, 6, 9-13.

    Google Scholar 

  • Caron, M., Fortin, J. A., & Richard, C. (1986). Effect of Glomus intraradices on the infection by Fusarium oxysporum f. sp. radicis-lycopersici on tomatoes over a twelve-week period. Canadian Journal of Botany, 64, 552-556.

    Google Scholar 

  • Chet, I., (Ed.). (1987). Innovative approaches to plant disease control. John Wiley & Sons, New York.

    Google Scholar 

  • Chincholkar, S. B., Chaudhari, B. L. Rane, M. R. & Sarode, P. D. (2007). Fungal phytopathogen suppression using Siderophoregenic bioinoculants. In Chincholkar, S. B. & Mukerji, K. G. (eds.). Biological Control of Plant Diseases. The Haworth Press Inc., New York, pp 401-417.

    Google Scholar 

  • Cook, R. J. & Baker, K. F. (1983). The nature and practice of biological control of plant pathogens. The American Phytopathological Society, St. Paul, Mn., USA.

    Google Scholar 

  • Cooper, K. M. & Grandison, G. S. (1986). Interaction of vesicular-arbuscularmycorrhizal fungi and root knot nematode on cultivars of tomato and white clover susceptible to Meloidogyne hapla. Annuals of Applied Biology, 108, 555-565.

    Google Scholar 

  • Cordier, C., Gianinazzi, S., & Gianinazzi-Pearson, V. (1996). Colonisation patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant and Soil, 185, 223- 232.

    CAS  Google Scholar 

  • Cordier C., Pozo M. J., Barea J. M., Gianinazzi, S. & Gianinazzi-Pearson, V. (1998). Cell defense responses associated and localised and systemic mycorrhizal fungus. Molecular Plant-Microbe Interactions, 11, 1017-28.

    CAS  Google Scholar 

  • Creelman, R. A. & Mullet, J. E. (1997). Biosynthesis and action of jasmonates in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 355-381.

    CAS  PubMed  Google Scholar 

  • Curl, E. A. & Truelove, B. (1986). The rhizosphere. Springer, Berlin, Germany.

    Google Scholar 

  • Dar, G. H., Zargar, M. Y. & Beigh, G. M. (1997). Biocontrol of Fusarium rootrot in the common bean (Phaseolus vulgaris L.) by using symbiotic Glomus mosseae and Rhizobium leguminosarum. Microbial Ecology, 34, 74-80.

    Google Scholar 

  • Davies, F. T. Jr, Potter, J. R, Linderman, R. G. (1992). Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and utrient content. Journal of Plant Physiology, 139, 289-294.

    Google Scholar 

  • Davies, F. T. Jr, Olalde-Portugal, V., Aguilera-Gomez, L., Alvarado, M. J., Ferrera-Cerrato, R. C., Boutton, T.W. (2002) Alleviation of droughtstress of Chile ancho pepper (Capsicum annuum L. cv. San Luis) with arbuscular mycorrhiza indigenous to Mexico. Science Horticulture, 92, 347-359.

    Google Scholar 

  • Deacon, J. W. (1983). Microbial control of plant pests and diseases. American Society of Microbiology, Washington, DC, USA.

    Google Scholar 

  • Declerck, S., Risede, J. M., Rufyikiri, G. & Delvaux, B. (2002). Effects of arbuscular mycorrhizal fungi on severity of root rot of bananas caused by Cylindrocladium spathiphylli. Plant Pathology, 51, 109-115.

    Google Scholar 

  • Défago, G., & Keel, C. (1995). Pseudomonads as biocontrol agents of diseases caused by soilborne pathogens. In: Hokkanen H.M.T. & Lynch, J.M. (eds.). Benefits and Risks of Introducing Biocontrol Agents. University Press, Cambridge, UK, 137-148.

    Google Scholar 

  • Demir, S. & Akkopru, A. (2007). Using of Arbuscular Mycorrhizal fungi (AMF) for biocontrol of soil-borne fungal plant pathogens. In: Chincholkar, S. B. & Mukerji, K.G. (eds.). Biological control of Plant Diseases. The Haworth Press, Inc., New York, 17-46.

    Google Scholar 

  • Diedhiou, P. M., Hallmann, J., Oerke, E. C. & Dehne, H. W. (2003). Effect of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza, 13, 199-204.

    CAS  PubMed  Google Scholar 

  • Dowling, D. N., & O’Gara, F. (1994). Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends in Biotechnology, 12, 133-144.

    CAS  Google Scholar 

  • Duchesne, L. C. (1994). Role of ectomycorrhizal fungi in biocontrol. In: Pfleger F. L. & Linderman, R.G. (eds). Mycorrhizae and Plant Health. American Phytopatholical Society, Press, St. Paul, USA, pp 27-45.

    Google Scholar 

  • Duchesne, L. C. Peterson, R. L. & Elis, B. E. (1987a), The accumulation of plant-produced antimicrobial components in response to ectomycorrhizal fungi: a review. Phytoprotection, 68, 17-27.

    CAS  Google Scholar 

  • Duchesne, L. C. Peterson, R. L. & Elis, B. E. (1987b). Pine root exudates stimulate antibiosis by Paxillus involutus against Fusarium oxysporum. In: D.M. Sylvia, L. L. Hung & J.H. Graham, (eds). Proc. 7th NACOM, Gainesville, U.S.A. pp. 193.

    Google Scholar 

  • Duchesne, L. C. Peterson, R. L. & Elis, B. E. (1988a), Interaction between the ectomycorrhizal fungus Paxillus involutus and Pinus resinosa induces resistance to Fusarium oxysporum. Canadian Journal of Botany, 66, 558-562.

    Google Scholar 

  • Duchesne, L.C. Peterson, R.L. & Elis, B.E. (1988b), Pine root exudates stimulate antibiosis by the ectomycorrhizal fungus Paxillus involutus. New Phytologist, 108, 471-476.

    CAS  Google Scholar 

  • Duchesne, L.C. Peterson, R.L. & Elis, B.E. (1989a), The future of ectomycorrhizal fungi as biological control agents. Phytoprotection, 70, 51-58.

    Google Scholar 

  • Duchesne, L. C. Peterson, R. L. & Elis, B. E. (1989b), The time-course of disease suppression and antibiosis by the ectomycorrhizal fungus Paxillus involutus. New Phytologist, 111, 693-698.

    Google Scholar 

  • Durrant, W. E. & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42; 185-209.

    CAS  PubMed  Google Scholar 

  • Elsen, A., Declerck, S., & De Waele, D. (2001). Effects of Glomus intraradices on the reproduction of the burrowing nematode(Radophulus similis) in dixenic culture. Mycorrhiza, 11, 49-51.

    Google Scholar 

  • Farmer E. E., Weber H. & Vollenweider, S. (1998). Fatty acid signaling in Arabidopsis. Planta, 206, 167-175.

    CAS  PubMed  Google Scholar 

  • Filion, M., St-Arnaud, M. & Fortin, J. A. (1999). Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytologist, 141, 525-533.

    Google Scholar 

  • Filion, M., St-Arnaud, M., & Jabaji-Hare, S. H. (2003). Quantification of Fusarium solani f. sp. phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology, 93, 229-235.

    CAS  PubMed  Google Scholar 

  • Founoune, H., Duponnois, R. & Ba, A. M. (2002). ctomycorrhization of Acacia mangium mangium, Willd. and Acacia holosericea, A. Cunn. ex G. Don in Senegal. Impact on plant growth, populations of indigenous symbiotic microorganisms and plant parasitic nematodes. Journal of Arid Environments, 50, 325-332.

    Google Scholar 

  • Francl, L. J., & Dropkin, V. H. (1985). Glomus fasciculatum, a weak pathogen of Heterodera glycines. Journal of Nematology, 17, 470-475.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Francl, L. J. (1993). Interactions of nematodes with mycorrhizae and mycorrhizal fungi. In: Khan, M. W. (Ed.). Nematode Interactions. Chapman and Hall, 203-216.

    Google Scholar 

  • Fritz, M., Jakobsen, I., Lyngkjer, M. F., Thordal-Christensen, H. & Pons-Kuhnemann, J. (2006). Arbuscular mycorrhiza reduces susceptibility of tomato Alternaria solani. Mycorrhiza, 16, 413-419.

    PubMed  Google Scholar 

  • Gamalero, E., Martinotti, M. G., Trotta, A., Lemanceau, P. & Berta, G. (2004). Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytologist, 155, 293-300.

    Google Scholar 

  • Gao, L. L., Knogge, W., Delp, G., Smith, F. A., & Smith, S. E. (2004). Expression patterns of defense-related genes in different types of arbuscular mycorrhizal development in wild-type and mycorrhiza-defective mutant tomato. Molecular Plant-Microbe Interactions, 7, 1103-1113.

    Google Scholar 

  • Garbaye, J. (1994). Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytologist, 128, 197-210.

    Google Scholar 

  • Garmendia, I., Goicoechea, N., Aguirreolea, J. (2004a). Plant phenology influences the effect of mycorrhizal fungi on the development of Verticillium-induced wilt in pepper. European Journal of Plant Pathology, 110, 227-238.

    Google Scholar 

  • Garmendia, I., Goicoechea, N. & Aguirreolea, J. (2004b). Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against Verticillium wilt. Biocontrol, 31, 296-305.

    Google Scholar 

  • Garmendia, I., Goicoechea, N. & Aguirreolea, J. (2005). Moderate drought influences the effect of arbucular-mycorrhizal fungi as biocontrol agents against Verticillium-induced wilt in pepper. Mycorrhiza, 15, 345-356.

    PubMed  Google Scholar 

  • Garmendia, I., Aguirreolea, J. & Goicoechea, N. (2006). Defence-realted enzymes in pepper roots during interactions with arbuscular mycorrhizal fungi and/or Verticillium dahliae. Biocontrol 51, 293-310.

    CAS  Google Scholar 

  • Gasper, T., Penel, C., Hagege, D. & Greppin, H. (1991). Peroxidases in plant growth, differentiation and development processes, In: Labarzweski, J., Greppin, H., Penel, C. & Gasper, T. (eds). Biochemical, molecular and physiological aspects of plant peroxidases. University Press, Geneva, Switzerland, 251-280.

    Google Scholar 

  • Giri, B., Giang, P. H., Kumari, R., Prasad, R. Sachdev, M., Garg, A. P., Oelmuller, R. & Varma, A. (2005). Mycorrhizosphere: Strategies and Functions. In: Buscot, F. & Varma, A. (eds.). Soil Biology, Vol. 3. Microorganisms in soils: roles in genesis and functions. Springer-Verlag, Berlin, Hydelberg, 213-252.

    Google Scholar 

  • Goicoechea, N., Aguirreolea, J., Cenoz, S., García-Mina, J. M. (2000). Verticillium dahliae modifies the concentrations of proline, soluble sugars, starch, soluble protein and abscisic acid in pepper plants. European Journal of Plant Pathology, 106,19-25

    CAS  Google Scholar 

  • Grayston, S. J., Vaughan, D. & Jones, D. (1997). Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology 5, 29-56.

    Google Scholar 

  • Guillon, C., St-Arnoud, M., Hamel, C. & Jabaji-Hare, S. H. (2002). Differential and systemic alteration of defence-related gene transcript levels in mycorrhizal bean plants with Rhizoctonia solani. Canadian Journal of Botany, 80, 305-315.

    CAS  Google Scholar 

  • Gupta, R. & Mukerji, K. G. (2002). Root exudate - Biology. In: Mukerji, K. G., Manoharachary, C. & Chamola, B. P. (eds.). Techniques in Mycorrhizal Studies. Kluwer Academic Publishers, Dordrecht, The Netherlands, 103-131.

    Google Scholar 

  • Hallmann, J. & Sikora, R. A. (1996). Toxicity of fungal endophyte secondary metabolites to plant parasitic nematodes and soilborne plant pathogenic fungi. European Journal of Plant Pathology, 102,155-162.

    CAS  Google Scholar 

  • Harrier, L. A. & Watson, C. A. (2004). The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Management Science, 60, 149-157.

    CAS  PubMed  Google Scholar 

  • Hause, B, Maier, W., Miersch, O., Kramell, R., & Strack, D. (2002). Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiology, 130, 1213-1220.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heungens, K. & Parke, J. L. (2001) Post infection biological control of oomycete pathogens of pea by Burkholderia cepacia AMMDR1. Phytopathology, 91, 383-391.

    CAS  PubMed  Google Scholar 

  • Hodge, A., Alexander, I. J. & Gooday, G. W. (1995). Chitinolytic activities of Eucalyptus pilularis and Pinus sylvestris root system challenged with mycorrhizal and pathogenic fungi. New Phytologist, 131, 255-261.

    CAS  Google Scholar 

  • Huang, J., Luo, S. & Zeng, R. (2006). Mechanism of plant disease resistance induced by arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 56, 167-171.

    Google Scholar 

  • Hussey, R. S. & Roncadori, R. W. (1982) Vesicular arbuscular mycorrhizal fungi may limit nematode activity and improve plant growth. Plant Disease, 66, 9-14.

    Google Scholar 

  • Hwang, S. F., Chang, K. F., & Chakravarty, P. (1992). Effects of vesicular-arbuscularb mycorrhizal fungi on the development of Verticillium and Fusarium wilts of Alfalfa. Plant Disease, 76, 239-243.

    Google Scholar 

  • Jaizme-Vega, M.C., Tenoury, P., Pinochet, J. & Jaumot, M. (1997). Interactions between the root knot nematode Meloidogyne incognita and Glomus mosseae in banana. Plant and Soil, 196, 27-35.

    CAS  Google Scholar 

  • Johansson, J. F., Paul, L. R. & Finlay, R. D. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology, 48, 1-13.

    CAS  PubMed  Google Scholar 

  • Kapoor, R. & Mukerji, K.G. (1998). Microbial ineractions in mycorrhizosphere of Anethum graveolens L. Phytomorphology, 48, 383-389.

    Google Scholar 

  • Keel, C., & Défago, G. (1997). Interactions between beneficial soil bacteria and root pathogens: mechanisms and ecological impact, p. 27-46. In A. C. Gange and V. K. Brown (Eds.), Multitrophic interactions in terrestrial systems. Blackwell Science, London, England.

    Google Scholar 

  • Kope, H. H., Tsantrizos, Y. S., Fortin, J. A. & Ogilvie, K. K. (1991). Para-hydroxybenzoylformic acid and (R)-(-)-para-hydroxymandelic acid, two antifungal compounds isolated from the liquid culture of the ectomycorrhizal fungus Pisolithus arhizus. Canadian Journal of Microbiology, 37, 258-264.

    CAS  PubMed  Google Scholar 

  • Lanfranco, L., Novero, M., & Bonfante, P. (2005). The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiology, 137, 1319-1330.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Linderman, R. G. (1988). Mycorrhizal interactions with the rhizosphere microflora. The mycorrhizosphere effect. Phytopathology, 78, 366-371.

    Google Scholar 

  • Linderman, R. G. (1991). Mycorrhizal interaction in the rhizosphere. In: Keister, D. L. & Gregan, P. B. (eds.). Rhizosphere and plant growth. Kluwer Academic Publishers. Dordrecht, The Netherlands, pp 343-348.

    Google Scholar 

  • Linderman, R. G. (1992). Vesicular arbuscular mycorrhizae and soil microbial interactions. In: Bethlenfalvey, G. J. & Linderman, R. G. (eds.). Mycorrhiza in sustainable agriculture. American Society of Agronomy, No. 54, Madison, Wesconsin, pp 45-70.

    Google Scholar 

  • Linderman, R. G. (1994). Role of VAM in biocontrol. In: Pfleger, F. L. & Linderman, R. G. (eds.). Mycorrhizae and plant health. Americal Phytopathological Society, St Paul, MN, pp 1-26.

    Google Scholar 

  • Linderman, R. G. (2000). Effects of mycorrhizas on plant tolerance to diseases. In : Kapulnik, Y., and Douds, D. D. J. (eds). Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, Dordrecht, The Netherlands, 345-365.

    Google Scholar 

  • Lingua, G, D’Agostino, G., Massa, N., Antosiano, M., & Berta, G. (2002). Mycorrhiza-induced differential response to a yellow disease in tomato. Mycorrhiza, 12, 191-198.

    PubMed  Google Scholar 

  • Liu, R. J. (1995). Effect of vesicular-arbuscular mycorrhizal fungi on Verticillium wilt of cotton. Mycorrhiza, 5, 293-297.

    Google Scholar 

  • Marschner, P., Crowley, D. E., & Lieberei, R. (2001). Arbuscular mycorrhizal infection changes the bacterial 16s rDNA community composition in the rhizosphere of maize. Mycorrhiza, 11, 297-302.

    CAS  Google Scholar 

  • Mcallister, C. B., Garcia-Romera, I., Godeas, A., & Ocampo, J. A. (1994). Interactions between Trichoderma koningii, Fusarium solani and Glomus mosseae - Effects on plant growth, arbuscular mycorrhizas and the saprophyte inoculants. Soil Biology & Biochemistry, 26, 1363-1367.

    Google Scholar 

  • Morin, C., Samson, J., & Dessureault, M. (1999). Protection of black spruce seedlings against Cylindrocladium root rot with ectomycorrhizal fungi. Candian Journal of Botany, 77, 169-174.

    Google Scholar 

  • Mukerji, K. G., & Garg, K. L. (Eds.) (1988a). Biocontrol of Plant Diseases. Vol. 1. CRC Press Inc., Florida, pp. 211.

    Google Scholar 

  • Mukerji, K. G., & Garg, K. L. (Eds.) (1988b). Biocontrol of Plant Diseases. Vol. 2. CRC Press Inc., Florida, pp 198.

    Google Scholar 

  • Mukerji, K. G., (1999). Mycorrhiza in control of plant pathogens: molecular approaches. In: Mukerji, K. G., Chamola B. P. & Upadhyay, R. K. (Eds), Biotechnological Approaches in Biocontrol of Plant Pathogens. Kluwer Academic/Plenum Publishers, New York, 135-155.

    Google Scholar 

  • Mukerji, K. G. (2002a). Soil microbes. In: Mukerji, K. G., Manoharachary, C. & Chamola, B. P. (Eds.). Techniques in Mycorrhizal Studies, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 7-13.

    Google Scholar 

  • Mukerji, K. G. (2002b). Rhizosphere biology. In: Mukerji, K. G., Manoharachary, C. & Chamola, B. P. (eds.) Techniques in Mycorrhizal studies. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 87-101.

    Google Scholar 

  • Mukerji, K. G., Upadhyay, R. K. & Kaushik, A. (1996). Mycorrhiza and integrated disease management. In Upadhyay, R. K., Mukerji, K. G. & Rajak, R. L. (eds.) IPM system in Agriculture vol.2, Biocontrol in emerging biotechnology. Aditya Books, New Delhi, pp 423-452.

    Google Scholar 

  • Mukerji, K. G. Chamola, B. P. & Sharma, M. (1997). Mycorrhiza in control of plant diseases. In, Agnhotri, V. P., Sarbhoy, A. K. & Singh D.V. (eds.). Management of Threatening Plant Diseases of National Importance. Malhotra Publishing House, New Delhi, pp. 298-314.

    Google Scholar 

  • Munzenberger, B., Olter, T., Wustrich, D. & Polle, A. (1997). Peroxidase and lacease activities in mycorrhizal and non-mycorrhizal fine roots of Norway spruce (Picea abies) and larch (Larix decidua). Canadian Journal of Botany, 75, 932-938.

    CAS  Google Scholar 

  • Norman, J. R., Atkinson, D., & Hooker, J. E. (1996). Arbuscular mycorrihizal fungal induced alteration to root pathogen Phytophthora fragariae. Plant and Soil, 185, 191-8.

    CAS  Google Scholar 

  • Norman, J. R. & Hooker, J. E. (2000). Sporulation of Phytophthora fragariae shows greater stimulation by exudates of nonmycorrhizal than mycorrhizal strawberry roots. Mycological Research, 104, 1069-1073.

    Google Scholar 

  • O’Bannon, J. H., & Nemec, S. (1979). The response of Citrus limon seedlings to a symbiont, Glomus etunicatus, and a pathogen, Radopholus similis. Journal of Nematology, 11, 270-274.

    PubMed Central  PubMed  Google Scholar 

  • Paulitz, T. C., & Linderman, R. G. (1989). Interactions between fluorescent pseudomonads and VA mycorrhizal fungi. New Phytologist, 113, 37-45.

    Google Scholar 

  • Paulitz, T. C. & Linderman, R.G. (1991). Mycorrhizal interactions with soil organisms. In: Arora, D. K., Mukerji, K. G. & Knudsen G. R. (eds.). Hand Book of Applied Mycology. II. Soil and Plants. Marcel Dekker, New York, 77-129.

    Google Scholar 

  • Pinochet, J., Calvet, C., Camprubi, A. & Fernandez, C. (1996). Interactions between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in perennial crops - A review. Plant and Soil, 185, 183-190.

    CAS  Google Scholar 

  • Pozo, M. J., Azcón-Aguilar, C., Dumas-Gaudot, E. & Barea, J. M. (1998). Chitinosanase and chitinase activities in tomato roots during interactions with arbuscular mycorrhizal fungi or Phytophthora parasitica. Journal of Experimental Botany, 49, 1729-1739.

    CAS  Google Scholar 

  • Pozo, M. J, Azcón-Aguilar, C., Dumas-Gaudot, E. & Barea, J. M. (1999). β-1-3 glucanase activities in tomato roots inoculated with the arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Science,141, 149-157.

    CAS  Google Scholar 

  • Pozo, M. J, Cordier, C., Dumas-Gaudot, E. & Barea, J. M., Azcón-Aguilar, C. (2002). Localised versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal of Experimental Botany, 53, 525-534.

    CAS  PubMed  Google Scholar 

  • Rao, M. S., Reddy, P. P. & Das, S. M. (1996). Effect of integration of Calotropis procera leaf and Glomus fasciculatum on the management of Meloidogyne incognita infesting tomato. Nematologia Mediterranea, 24, 59-61.

    Google Scholar 

  • Rao, M. S., Reddy, P. P., Sukhada, M., Nagesh, M., & Pankaj. (1998). Management of root-knot nematode on egg plant by integrating endomycorrhiza (Glomus fasciculatum and castro (Ricinus communis) cake. Nematologia Mediterranea, 26, 217-219.

    Google Scholar 

  • Ruiz-Lozano, J. M., Collados, C., Barea, J. M. & Azcón, C. (2001). Cloning cDNAs encoding SODs from lettuce plants which show differential regulation by arbuscular mycorrhizal symbiosis and by drought stress. Journal of Experimental Botany, 52, 2241-2242.

    CAS  PubMed  Google Scholar 

  • Ruiz-Lozano, J. M. (2003). Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 13, 309-317.

    PubMed  Google Scholar 

  • Ryan, C. A. (2000). The systemin signaling pathway: differential activation of plant defensive genes. Biochimica and Biophysica Acta, 1477, 112-121.

    CAS  Google Scholar 

  • Saleh, H. & Sikora, R. A. (1984) Relationship between Glomus fasciculatum root colonization of cotton and its effect on Meloidogyne incognita. Nematologia, 30, 230-237.

    Google Scholar 

  • Salzer, P., Bonamoni, A., Beyer, K., Vogeli-Lange, R., Aeschbacher, R.A., Lange, J., et al. (2000). Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation and pathogen infection. Molecular Plant-Microbe Interactions, 13, 763-777

    CAS  PubMed  Google Scholar 

  • Schisler, D. A. & Linderman, R. G. (1987). The influence of volatiles purged from soil around Douglas fir ectomycorrhizeae on soil microbial populations. In: Sylvia, H., Hung, H. & Grahans, J. H. (Eds.), Proceedings 7th NACOM, 217-218.

    Google Scholar 

  • Shanahan, P., O’Sullivan, D. J., Simpson, P., Glennon, J. D. & Fergal O’Gara. (1992). Isolation of 2, 4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production.Applied and Environmental Microbiology, 58, 353-358.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma, M. P. & Adholeya, A. (2000). Sustainable management of arbuscular mycorrhizal fungi in the biocontrol of soil-borne plant diseases. In: Upadhyay, R. K., Mukerji, K. G. & Chamola, B. P. (Eds.). Biocontrol potential and its exploitation in sustainable agriculture. Vol. I. Crop diseases. Kluwer Academic / Plenum Publishers, New York, 117-138.

    Google Scholar 

  • Sharma, M. P., Gaur, A. & Mukerji, K. G. (2007). Arbuscular mycorrhiza mediated plant pathogen interactions and their mechanisms involved. In: Chincholkar, S. B. & Mukerji, K. G. (eds.). Biological control of plant diseases. The Haworth Press Inc., New York, 47-74.

    Google Scholar 

  • Sharma, M. P., Gaur, A., Tanu, U. & Sharma, O. P. (2004). Prospects of arbuscular mycorrhiza in sustainable management of root and soil-borne diseases of vegetable crops. In: Mukerji, K. G. (Ed.). Disease management of fruits and vegetables. Vol. I. Fruit and vegetable diseases. Kluwer Academic Publishers, The Netherlands, 501-539.

    Google Scholar 

  • Shaul, O., Galili, S., Volpin, H., Ginzber, I., Elad, Y., Chet, I., & Kapulnik, Y. (1999). Mycorrhiza-induced change in disease severity and PR protein expression in tobacco leaves. Molecular Plant-Microbe Interactions 12, 1000-1007.

    CAS  PubMed  Google Scholar 

  • Simoneau, P., Feugey, L., Viemont, J. D., Swoboda, I., Heberte-Bors, E. & Strulla, D.G. (1996). Induction of phenylalnine ammonia-lyase in birch challenged with ectomycorrhizal fungi. In: Azcón-Aguilar, C. & Barea, J. M. (Eds.). Mycorrhiza in integrated systems from genes to plant development. Proceedings 4th European Symposium on Mycorrhiza. Granada, Bruxelles, 203.

    Google Scholar 

  • Singh, R., Adholeya, A. & Mukerji, K. G. (2000). Mycorrhizae in control of soil-borne pathogens. In: Mukerji, K. G., Chamola, B. P. & Singh, J. (Eds.). Mycorrhizal Biology. Kluwer Academic/Plenum Publishers, New York, 173-196.

    Google Scholar 

  • Slezack, S., Dumas-Gaudot, E., Rosendahl, S., Kjoller, R., Paynot, M., Negrel, J. & Gianinazzi, S. (1999). Endoproteolytic activities in pea roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and/or Aphanomyces euteiches in relation to bioprotection. New Phytologist, 142, 517-529.

    Google Scholar 

  • Slezack, S., Dumas-Gaudot, E., Paynot, M., & Gianinazzi, S. (2000). Is a fully establish arbuyscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces euteiches Molecular Plant-Microbe Interactions, 13, 238-241.

    CAS  Google Scholar 

  • Slezack, S., Negrel, J., Bestel-Corre, G., Dumas-Gaudot, E. & Gianinazzi, S.(2001). Purification and partial amino acid sequencing of a mycorrhiza-related chitinase isoform from Glomus mosseae-inoculated roots of Pisum sativum L. Planta, 213, 781-787.

    CAS  PubMed  Google Scholar 

  • Smith, G. S., Roncadori, R. W., & Hussey, R. S. (1986). Interaction of endomycorrhizal fungi, superphosphate, and Meloidogyne incognita on cotton in microplot and field studies. Journal of Nematology, 18, 208-216.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith, S. E, & Read, D. J. (1997). Mycorrhizal symbiosis, 2nd edn. Academic, San Diego, US.

    Google Scholar 

  • St-Arnaud, M., Hamel, C., Caron, M. & Fortin, J. A. (1994). Inhibition of Pythium ultimum in roots and growth substrate of mycorrhizal Tagetes patula colonized with Glomus intraradices. Canadian Journal of Plant Pathology, 16,187- 194.

    Google Scholar 

  • St-Arnaud, M., Hamel, C., Vimard, B., Caron, M., & Fortin, J. A. (1997). Inhibition of Fusarium oxysporum f. sp. dianthi in the non-VAM species Dianthus caryophyllus by co-culture with Tagetes patula companion plants colonized by Glomus intraradices. Canadian Journal of Botany, 75, 998-1005.

    Google Scholar 

  • Summerbell, R.C. (1987). The inhibitory effect of Trichoderma species and other soil microfungi on formation of mycorrhiza by Laccaria bicolor in vitro. New Phytologist, 105, 437-448.

    Google Scholar 

  • Suresh, A. K., Bagyaraj, D. J. & Reddy, D. D. R. (1985). Effect of vesicular arbuseular mycorrhiza on survival, penetration and development of root-knot namatode in tomato. Plant and Soil, 87, 305-308.

    Google Scholar 

  • Sylvia, D. M. & Sinclair, W. A. (1983). Phenolic compounds and resistance to fungal pathogens induced in primery roots of Douglas fir seedlings by the ectomycorrhizal fungus, Laccaria laccata. Phytopathology, 73, 390-397.

    Google Scholar 

  • Thomson Cason, K. M., Hussey, R. S., & Roncadori, R. W. (1983). Interaction of vesicular-arbuscular mycorrhizal fungi and phosphorus with Meloidogyne incognita on tomato. Journal of Nematology, 15, 410-417.

    Google Scholar 

  • Thygesen, K., Larsen, J. & Bodker, L. (2004). Arbuscular mycorrhizal fungi reduce development of pea root-rot caused by Aphanomyces euteiches using oospores as pathogen inoculum. European Journal of Plant Pathgology, 110, 411-419.

    CAS  Google Scholar 

  • Timonen, S. & Marshner, P. (2006). Mycorrhizosphere concept. In: Mukerji, K.G., Manoharachary, C. & Singh, J. (Eds.). Microbial activity in the rhizosphere. Springer-Verlag, Berlin, Heidelberg, 155-172.

    Google Scholar 

  • Torres-Barragán, A., Zavaleta-Mejía, E., González-Chávez, C., & Ferrera-Cerrato, R. (1996). The use of arbuscular mycorrhizae to control onion white rot (Sclerotium cepivorum Berk.) under field conditions. Mycorrhiza, 6, 253-257.

    Google Scholar 

  • Trappe, J. M. & Fogel, R. D. (1977). Ecosystematic functions of mycorrhizae. In: J. K. Marshall, (Ed.), The Belowground Ecosystem: A Synthesis of Plant-Associated Processes. Range Science Department Science Series No. 26., Colorado State University, Fort Collins, CO, 205-214.

    Google Scholar 

  • Trotta, A., Varese, G. C., Gnavi, E., Fusconi, A., Sampo, S., & Berta, G. (1996). Interactions between the soilborne root pathogen Phytophthora nicotianae var parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant and Soil 185, 199-209.

    CAS  Google Scholar 

  • Utkhede, R. (2006). Increased growth and yield of hydroponically grown green house tomato plants inoculated with arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. radicis-lycopersici. Biocontrol, 51, 393-400.

    Google Scholar 

  • Vassilev, N., Vassileva, M. & Nikolaeva, I. (2006). Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Applied Microbial Biotechnology, 71, 137-144.

    CAS  Google Scholar 

  • Vigo, C., Norman J. R. & Hooker, J. E. (2000). Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathology, 49, 509-514.

    Google Scholar 

  • Vivas, A., Azcón, R., Biro, B., Barea, J. M., & Ruiz-Lozano, J. M. (2003). Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Canadian Journal of Microbiology, 49, 577-588.

    CAS  PubMed  Google Scholar 

  • Voisard, C., Bull, C. T., Keel, C. Laville, J., Maurhofer, M., Schnider, U., et al. (1994). Biocontrol of root diseases by Pseudomonas fluorescence CHAO. Current concepts and experimental approaches. In: O’Gara, F., Dowling, D. N. & Boesten D. (eds.). VCH, Weingheim, Germany, pp. 60-89.

    Google Scholar 

  • Von der Weid, I., Artursson, V., Seldin, L., & Jansson, J. K. (2005). Antifungal and root surface colonization properties of GFP-tagged Paenibacillus brasilensis PB177. World Journal of Microbiology and Biotechnology, 21, 1591-1597.

    Google Scholar 

  • Wacker, T. L., Safir, G. R., & Stephens, C. T. (1990). Effect of Glomus fasciculatumon the growth of asparagus and the incidence ofFusarium root rot. Journal of the American Society for Horticultural Science, 115, 550-554.

    Google Scholar 

  • Whipps, J. W. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of it Experimental Botany, 52, 487-511.

    CAS  Google Scholar 

  • Xavier, L. J. C. & Boyetchko, S. M. (2002). Mycorrhizeae as biocontrol agents. In: Mukerji K. G., Manoharachary, C. & Singh J. (Eds.). Techniques in mycorrhizal studies. Kluwer Academic Publishers, The Netherlands, 493-536.

    Google Scholar 

  • Zaidi, R. & Mukerji, K. G. (1983). Incidence of vesicular arbuscular mycorrhiza (VAM) in diseased and healthy plants. Indian Journal of Plant Pathology, 1, 24-31.

    Google Scholar 

  • Zeng, R. S. (2006). Disease resistance in plants through mycorrhizal fungi induced allelo-chemicals. In: Inderjit, K. M., & Mukerji, K.G. (Eds.) Allelochemicals: Biological control of plant pathogens and diseases. Springer, The Netherlands, 181-192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Mukerji, K.G., CIANCIO, A. (2007). Mycorrhizae In The Integrated Pest And Disease Management. In: Ciancio, A., Mukerji, K.G. (eds) General Concepts in Integrated Pest and Disease Management. Integrated Management of Plants Pests and Diseases, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6061-8_10

Download citation

Publish with us

Policies and ethics