Skip to main content

High-Throughput Biophysical Approaches to Therapeutic Protein Development

  • Chapter
  • First Online:
Biophysics for Therapeutic Protein Development

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 4))

Abstract

High-throughput methods have become indispensible tools in the development of proteins as therapeutic agents and are being applied in every phase of protein product development from candidate selection and purification development through commercial formulation development. This chapter presents some of the latest refinements in high-throughput biophysical methods and their application in therapeutic protein development. The methods discussed include liquid chromatography, surface plasmon resonance, light absorption spectroscopy, vibrational spectroscopy, fluorescence spectroscopy, calorimetry (both isothermal titration and differential scanning), and light scattering. In addition, empirical phase diagram as a tool to interpret results from high-throughput biophysical approaches is discussed. Finally, an industry perspective on the advantages and challenges of implementing high-throughput technology in therapeutic protein development is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrer K, Jungbauer A (2006) Chromatographic and electrophoretic characterization of protein variants. J Chromatogr B Analyt Technol Biomed Life Sci 841(1–2):110–122

    PubMed  CAS  Google Scholar 

  • Alexandrov AI, Mileni M, Chien EY, Hanson MA, Stevens RC (2008) Microscale fluorescent thermal stability assay for membrane proteins. Structure 16(3):351–359

    Article  PubMed  CAS  Google Scholar 

  • Alsenaidy MA, Wang T, Kim JH et al (2012) An empirical phase diagram approach to investigate conformational stability of “second-generation” functional mutants of acidic fibroblast growth factor-1. Protein Sci 21(3):418–432

    Article  PubMed  CAS  Google Scholar 

  • Andrew SM, Titus JA (2001) Purification of immunoglobulin G. Curr Protoc Immunol. Chapter 2:Unit 2.7

    Google Scholar 

  • Anquetil PA, Brenan CJ, Marcolli C, Hunter IW (2003) Laser Raman spectroscopic analysis of polymorphic forms in microliter fluid volumes. J Pharm Sci 92(1):149–160

    Article  PubMed  CAS  Google Scholar 

  • Bravman T, Bronner V, Lavie K, Notcovich A, Papalia GA, Myszka DG (2006) Exploring “one-­shot” kinetics and small molecule analysis using the ProteOn XPR36 array biosensor. Anal Biochem 358(2):281–288

    Article  PubMed  CAS  Google Scholar 

  • Bruylants G, Wouters J, Michaux C (2005) Differential scanning calorimetry in life sciences: thermodynamics, stability, molecular recognition and applications in drug design. Curr Med Chem 12:2011–2020

    Article  PubMed  CAS  Google Scholar 

  • Capelle MA, Gurny R, Arvinte T (2009) A high throughput protein formulation platform: case study of salmon calcitonin. Pharm Res 26(1):118–128

    Article  PubMed  CAS  Google Scholar 

  • Chang BS, Kendrick BS, Carpenter JF (1996) Surface-induced denaturation of proteins during freezing and its inhibition by surfactants. J Pharm Sci 85(12):1325–1330

    Article  PubMed  CAS  Google Scholar 

  • Coffman JL, Kramarczyk JF, Kelley BD (2008) High-throughput screening of chromatographic separations: I. Method development and column modeling. Biotechnol Bioeng 100(4):605–618

    Article  PubMed  CAS  Google Scholar 

  • Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-­throughput stability optimization of proteins for structural studies. Anal Biochem 357(2):289–298

    Article  PubMed  CAS  Google Scholar 

  • Esfandiary R, Yee L, Ohtake S et al (2010) Biophysical characterization of rotavirus serotypes G1, G3 and G4. Hum Vaccin 6(5):390–398

    Article  PubMed  CAS  Google Scholar 

  • Fahrner RL, Knudsen HL, Basey CD et al (2001) Industrial purification of pharmaceutical antibodies: development, operation, and validation of chromatography processes. Biotechnol Genet Eng Rev 18:301–327

    PubMed  CAS  Google Scholar 

  • Feng BY, Shelat A, Doman TN, Guy RK, Shoichet BK (2005) High-throughput assays for promiscuous inhibitors. Nat Chem Biol 1(3):146–148

    Article  PubMed  CAS  Google Scholar 

  • Fowler A, Swift D, Longman E et al (2002) An evaluation of fluorescence polarization and lifetime discriminated polarization for high throughput screening of serine/threonine kinases. Anal Biochem 308(2):223–231

    Article  PubMed  CAS  Google Scholar 

  • Goldberg DS, Bishop SM, Shah AU, Sathish HA (2010) Formulation development of therapeutic monoclonal antibodies using high-throughput fluorescence and static light scattering techniques: role of conformational and colloidal stability. J Pharm Sci 100(4):1306–1315

    Article  Google Scholar 

  • Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890

    Article  PubMed  CAS  Google Scholar 

  • Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA (2005) Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorg Chem 33(6):415–425

    Article  PubMed  CAS  Google Scholar 

  • Hanlon AD, Larkin MI, Reddick RM (2010) Free-solution, label-free protein-protein interactions characterized by dynamic light scattering. Biophys J 98(2):297–304

    Article  PubMed  CAS  Google Scholar 

  • Harn N, Allan C, Oliver C, Middaugh CR (2007) Highly concentrated monoclonal antibody solutions: direct analysis of physical structure and thermal stability. J Pharm Sci 96(3):532–546

    Article  PubMed  CAS  Google Scholar 

  • Hawe A, Sutter M, Jiskoot W (2008a) Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 25(7):1487–1499

    Article  PubMed  CAS  Google Scholar 

  • Hawe A, Friess W, Sutter M, Jiskoot W (2008b) Online fluorescent dye detection method for the characterization of immunoglobulin G aggregation by size exclusion chromatography and asymmetrical flow field flow fractionation. Anal Biochem 378(2):115–122

    Article  PubMed  CAS  Google Scholar 

  • Hawe A, Filipe V, Jiskoot W (2010a) Fluorescent molecular rotors as dyes to characterize polysorbate-­containing IgG formulations. Pharm Res 27(2):314–326

    Article  PubMed  CAS  Google Scholar 

  • Hawe A, Rispens T, Herron JN, Jiskoot W (2010b) Probing bis-ANS binding sites of different affinity on aggregated IgG by steady-state fluorescence, time-resolved fluorescence and isothermal titration calorimetry. J Pharm Sci 100(4):1294–1305

    Article  Google Scholar 

  • He F, Becker GW, Litowski JR, Narhi LO, Brems DN, Razinkov VI (2010a) High-throughput dynamic light scattering method for measuring viscosity of concentrated protein solutions. Anal Biochem 399(1):141–143

    Article  PubMed  CAS  Google Scholar 

  • He F, Hogan S, Latypov RF, Narhi LO, Razinkov VI (2010b) High throughput thermostability screening of monoclonal antibody formulations. J Pharm Sci 99(4):1707–1720

    PubMed  CAS  Google Scholar 

  • He F, Phan DH, Hogan S et al (2010c) Detection of IgG aggregation by a high throughput method based on extrinsic fluorescence. J Pharm Sci 99(6):2598–2608

    PubMed  CAS  Google Scholar 

  • He F, Woods CE, Becker GW, Narhi LO, Razinkov VI (2011) High-throughput assessment of thermal and colloidal stability parameters for monoclonal antibody formulations. J Pharm Sci 100(12):5126–5141

    Article  PubMed  CAS  Google Scholar 

  • Hu L, Olsen C, Maddux N, Joshi SB, Volkin DB, Middaugh CR (2011) Investigation of protein conformational stability employing a multimodal spectrometer. Anal Chem 83(24):9399–9405

    Article  PubMed  CAS  Google Scholar 

  • Jezek J, Rides M, Derham B et al (2011) Viscosity of concentrated therapeutic protein compositions. Adv Drug Deliv Rev 63(13):1107–1117

    Article  PubMed  CAS  Google Scholar 

  • Jiskoot W, Randolph TW, Volkin DB et al (2012) Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release. J Pharm Sci 101(3):946–954

    Article  PubMed  CAS  Google Scholar 

  • Karlsson R (2004) SPR for molecular interaction analysis: a review of emerging application areas. J Mol Recognit 17(3):151–161

    Article  PubMed  CAS  Google Scholar 

  • Khossravi M, Kao YH, Mrsny RJ, Sweeney TD (2002) Analysis methods of polysorbate 20: a new method to assess the stability of polysorbate 20 and established methods that may overlook degraded polysorbate 20. Pharm Res 19(5):634–639

    Article  PubMed  CAS  Google Scholar 

  • Kueltzo LA, Ersoy B, Ralston JP, Middaugh CR (2003) Derivative absorbance spectroscopy and protein phase diagrams as tools for comprehensive protein characterization: a bGCSF case study. J Pharm Sci 92(9):1805–1820

    Article  PubMed  CAS  Google Scholar 

  • Kung CE, Reed JK (1989) Fluorescent molecular rotors: a new class of probes for tubulin structure and assembly. Biochemistry 28(16):6678–6686

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Lee W, Fon W, Axelrod BW, Roukes ML (2009) High-sensitivity microfluidic calorimeters for biological and chemical applications. Proc Natl Acad Sci USA 106(36):15225–15230

    Article  PubMed  CAS  Google Scholar 

  • Lerchner J, Wolf A, Wolf G et al (2006) A new micro-fluid chip calorimeter for biochemical ­applications. Thermochim Acta 445:144–150

    Article  CAS  Google Scholar 

  • Lerchner J, Maskow T, Wolf G (2008) A new micro-fluid chip calorimeter for biochemical applications. Thermochim Acta 47:991–999

    CAS  Google Scholar 

  • Li CH, Nguyen X, Narhi L et al (2011) Applications of circular dichroism (CD) for structural analysis of proteins: qualification of near- and far-UV CD for protein higher order structural analysis. J Pharm Sci 100(11):4642–4654

    Article  PubMed  CAS  Google Scholar 

  • Mach H, Arvinte T (2011) Addressing new analytical challenges in protein formulation development. Eur J Pharm Biopharm 78(2):196–207

    Article  PubMed  CAS  Google Scholar 

  • Mach H, Middaugh CR (2011) Ultraviolet spectroscopy as a tool in therapeutic protein development. J Pharm Sci 100(4):1214–1227

    Article  CAS  Google Scholar 

  • Mach H, Bhambhani A, Meyer BK et al (2011) The use of flow cytometry for the detection of subvisible particles in therapeutic protein formulations. J Pharm Sci 100(5):1671–1678

    Article  PubMed  CAS  Google Scholar 

  • Maddux NR, Joshi SB, Volkin DB, Ralston JP, Middaugh CR (2011) Multidimensional methods for the formulation of biopharmaceuticals and vaccines. J Pharm Sci 100(10):4171–4197

    Article  CAS  Google Scholar 

  • Maddux NR, Rosen IT, Hu L, Olsen CM, Volkin DB, Middaugh CR (2012) An improved methodology for multidimensional high-throughput preformulation characterization of protein conformational stability. J Pharm Sci 101(6):2017–2024

    Article  PubMed  CAS  Google Scholar 

  • Malawski GA, Hillig RC, Monteclaro F et al (2006) Identifying protein construct variants with increased crystallization propensity – a case study. Protein Sci 15(12):2718–2728

    Article  PubMed  CAS  Google Scholar 

  • McEvoy M, Razinkov V, Wei Z, Casas-Finet JR, Tous GI, Schenerman MA (2011) Improved particle counting and size distribution determination of aggregated virus populations by asymmetric flow field-flow fractionation and multiangle light scattering techniques. Biotechnol Prog 27(2):547–554

    Article  PubMed  CAS  Google Scholar 

  • Otsuki S, Ishikawa M (2010) Wavelength-scanning surface plasmon resonance imaging for label-­free multiplexed protein microarray assay. Biosens Bioelectron 26(1):202–206

    Article  PubMed  CAS  Google Scholar 

  • Owicki JC (2000) Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. J Biomol Screen 5(5):297–306

    Article  PubMed  CAS  Google Scholar 

  • Pantoliano MW, Petrella EC, Kwasnoski JD et al (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen 6:429–440

    Article  PubMed  CAS  Google Scholar 

  • Peters WB, Frasca V, Brown RK (2009) Recent developments in isothermal titration calorimetry label free screening. Comb Chem High Throughput Screen 12(8):772–790

    Article  PubMed  CAS  Google Scholar 

  • Pierce MM, Raman CS, Nall BT (1999) Isothermal titration calorimetry of protein–protein interactions. Methods 19(2):213–221

    Article  PubMed  CAS  Google Scholar 

  • Printz M, Kalonia DS, Friess W (2012) Individual second virial coefficient determination of monomer and oligomers in heat-stressed protein samples using size-exclusion chromatography-light scattering. J Pharm Sci 101:363–372

    Article  PubMed  CAS  Google Scholar 

  • Privalov GP, Privalov PL (2000) Problems and perspectives in microcalorimetry of biological macromolecules. Methods Enzymol 323:31–62

    Article  PubMed  CAS  Google Scholar 

  • Rathore AS, Devine R (2008) PDA workshop on “Quality by Design for Biopharmaceuticals: Concepts and Implementation”, May 21–22, 2007, Bethesda, Maryland. PDA J Pharm Sci Technol 62(5):380–390

    PubMed  Google Scholar 

  • Rathore AS, Winkle H (2009) Quality by design for biopharmaceuticals. Nat Biotechnol 27(1):26–34

    Article  PubMed  CAS  Google Scholar 

  • Rich RL, Myszka DG (2000) Advances in surface plasmon resonance biosensor analysis. Curr Opin Biotechnol 11(1):54–61

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg AS (2006) Effects of protein aggregates: an immunologic perspective. AAPS J 8(3):E501–E507

    Article  PubMed  Google Scholar 

  • Sall J, Creighton L, Lehman A (2007) JMP start statistics: a guide to statistics and data analysis using JMP, 4th edn. SAS Press, Cary

    Google Scholar 

  • Schäfer G, Schmidt H (2006) High-throughput spectroscopic viscosity measurement of nanocomposite sols with ETC-effect. J Sol–Gel Sci Technol 38(3):241–244

    Article  Google Scholar 

  • Schiffer CA, Dotsch V (1996) The role of protein-solvent interactions in protein unfolding. Curr Opin Biotechnol 7(4):428–432

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R (2010) Dynamic light scattering for protein characterization. Encyclopedia of Analytical Chemistry, 20–24

    Google Scholar 

  • Sellick CA, Hansen R, Jarvis RM et al (2010) Rapid monitoring of recombinant antibody production by mammalian cell cultures using Fourier transform infrared spectroscopy and chemometrics. Biotechnol Bioeng 106(3):432–442

    PubMed  CAS  Google Scholar 

  • Shire SJ, Shahrokh Z, Liu J (2004) Challenges in the development of high protein concentration formulations. J Pharm Sci 93(6):1390–1402

    Article  PubMed  CAS  Google Scholar 

  • Siebert F, Hildebrandt P (2008) Vibrational spectroscopy in life science. Wiley-VCH, Weinheim

    Google Scholar 

  • Stackhouse N, Miller AK, Gadgil HS (2011) A high-throughput UPLC method for the characterization of chemical modifications in monoclonal antibody molecules. J Pharm Sci 100(12):5115–5125

    Article  PubMed  CAS  Google Scholar 

  • Sule SV, Sukumar M, Weiss WF, Marcelino-Cruz AM, Sample T, Tessier PM (2011) High-­throughput analysis of concentration-dependent antibody self-association. Biophys J 101(7):1749–1757

    Article  PubMed  CAS  Google Scholar 

  • Susanto A, Knieps-Grünhagen E, von Lieres E, Hubbuch J (2008) High throughput screening for the design and optimization of chromatographic processes: assessment of model parameter determination from high throughput compatible data. Chem Eng Technol 31(12):1846–1855

    Article  CAS  Google Scholar 

  • Swadesh J (2001) HPLC: practical and industrial applications, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Szapacs ME, Urbanski JJ, Kehler JR et al (2010) Absolute quantification of a therapeutic domain antibody using ultra-performance liquid chromatography-mass spectrometry and immunoassay. Bioanalysis 2(9):1597–1608

    Article  PubMed  CAS  Google Scholar 

  • Takeda H, Fukumoto A, Miura A, Goshima N, Nomura N (2006) High-throughput kinase assay based on surface plasmon resonance suitable for native protein substrates. Anal Biochem 357(2):262–271

    Article  PubMed  CAS  Google Scholar 

  • Tarazona MP, Saiz E (2003) Combination of SEC/MALS experimental procedures and theoretical analysis for studying the solution properties of macromolecules. J Biochem Biophys Methods 56(1–3):95–116

    Article  PubMed  CAS  Google Scholar 

  • Torres FE, Recht MI, Coyle JE, Bruce RH, Williams G (2010) Higher throughput calorimetry: opportunities, approaches and challenges. Curr Opin Struct Biol 20(5):598–605

    Article  PubMed  CAS  Google Scholar 

  • Verhaegen K, Baert K, Simaels J, Van Driessche W (2000) A high-throughput silicon microphysiometer. Sens Actuators A Phys 82(1):186–190

    Article  Google Scholar 

  • Vermeir S, Nicolai BM, Verboven P et al (2007) Microplate differential calorimetric biosensor for ascorbic acid analysis in food and pharmaceuticals. Anal Chem 79(16):6119–6127

    Article  PubMed  CAS  Google Scholar 

  • Vincentelli R, Canaan S, Campanacci V et al (2004) High-throughput automated refolding screening of inclusion bodies. Protein Sci 13(10):2782–2792

    Article  PubMed  CAS  Google Scholar 

  • Wagner M, Reiche K, Blume A, Garidel P (2012) Viscosity measurements of antibody solutions by photon correlation spectroscopy: an indirect approach – limitations and applicability for high-concentration liquid protein solutions. Pharm Dev Technol. doi:10.3109/10837450.2011.649851

    Google Scholar 

  • Wang L, Wang B, Lin Q (2008) Demonstration of MEMS-based differential scanning calorimetry for determining thermodynamic properties of biomolecules. Sens Actuators B Chem 134:953–958

    Article  Google Scholar 

  • Wassaf D, Kuang G, Kopacz K et al (2006) High-throughput affinity ranking of antibodies using surface plasmon resonance microarrays. Anal Biochem 351(2):241–253

    Article  PubMed  CAS  Google Scholar 

  • Wiendahl M, Schulze Wierling P, Nielsen J et al (2008) High throughput screening for the design and optimization of chromatographic processes – miniaturization, automation and parallelization of breakthrough and elution studies. Chem Eng Technol 31(6):893–903

    Article  CAS  Google Scholar 

  • Xiang Y, Liu Y, Lee ML (2006) Ultrahigh pressure liquid chromatography using elevated temperature. J Chromatogr A 1104(1–2):198–202

    PubMed  CAS  Google Scholar 

  • Yadav S, Liu J, Shire SJ, Kalonia DS (2010) Specific interactions in high concentration antibody solutions resulting in high viscosity. J Pharm Sci 99(3):1152–1168

    Article  PubMed  CAS  Google Scholar 

  • Yau N (2011) Visualize this: the FlowingData guide to design, visualization, and statistics. Wiley, Indianapolis

    Google Scholar 

  • Zhao H, Graf O, Milovic N et al (2010) Formulation development of antibodies using robotic system and high-throughput laboratory (HTL). J Pharm Sci 99(5):2279–2294

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

He, F., Razinkov, V.I., Middaugh, C.R., Becker, G.W. (2013). High-Throughput Biophysical Approaches to Therapeutic Protein Development. In: Narhi, L. (eds) Biophysics for Therapeutic Protein Development. Biophysics for the Life Sciences, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4316-2_2

Download citation

Publish with us

Policies and ethics