Skip to main content

Radionuclide Therapy of Bone Metastases

  • Chapter
  • First Online:
Nuclear Medicine Therapy

Abstract

Bone metastases occur in many patients with solid malignancies. Up to 85 % of patients with breast, lung, and prostate cancer at autopsy have bone metastases. Around 80 % of patients with prostate carcinoma, 50 % of patients with breast carcinoma and 40 % of patients with lung carcinoma develop clinically evident osseous metastases. Nearly half of them experience bone pain [1]. Other tumors can also metastasize to bone, including those originating in the kidneys, thyroid gland, endometrium, cervix, bladder, and gastrointestinal tract. However, these tumors account for less than 20 % of patients with bone metastases. The clinical implications of bone metastases are serious. When progressive, they often affect the patients’ quality of life by contributing to bone pain, use of narcotic analgesics, pathologic fractures, hypercalcemia, nerve entrapment, spinal cord compression, anxiety, depression, and loss of mobility [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campa III JA, Payne R. The management of intractable bone pain: a clinician’s perspective. Semin Nucl Med. 1992;22(1):3–10.

    Article  PubMed  Google Scholar 

  2. Nielsen OS, Munro AJ, Tannock IF. Bone metastases: pathophysiology and management policy. J Clin Oncol. 1991;9(3):509–24.

    PubMed  CAS  Google Scholar 

  3. Cancer pain relief and palliative care. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser. 1990;804:1–75.

    Google Scholar 

  4. Serafini AN. Therapy of metastatic bone pain. J Nucl Med. 2001;42(6):895–906.

    PubMed  CAS  Google Scholar 

  5. Lewington VJ. Bone-seeking radionuclides for therapy. J Nucl Med. 2005;46 Suppl 1:38S–47.

    PubMed  CAS  Google Scholar 

  6. Silberstein EB. Dosage and response in radiopharmaceutical therapy of painful osseous metastases. J Nucl Med. 1996;37(2):249–52.

    PubMed  CAS  Google Scholar 

  7. Silberstein EB. Systemic radiopharmaceutical therapy of painful osteoblastic metastases. Semin Radiat Oncol. 2000;10(3):240–9.

    Article  PubMed  CAS  Google Scholar 

  8. Joshi DP, et al. Evaluation of phosphorus 32 for intractable pain secondary to prostatic carcinoma metastases. JAMA. 1965;193:621–3.

    Article  PubMed  CAS  Google Scholar 

  9. Cheung A, Driedger AA. Evaluation of radioactive phosphorus in the palliation of metastatic bone lesions from carcinoma of the breast and prostate. Radiology. 1980;134(1):209–12.

    PubMed  CAS  Google Scholar 

  10. Silberstein EB. The treatment of painful osseous metastases with phosphorus-32-labeled phosphates. Semin Oncol. 1993;20(3 Suppl 2):10–21.

    PubMed  CAS  Google Scholar 

  11. Ritter MA, Cleaver JE, Tobias CA. High-LET radiations induce a large proportion of non-rejoining DNA breaks. Nature. 1977;266(5603):653–5.

    Article  PubMed  CAS  Google Scholar 

  12. Nilsson S, et al. First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res. 2005;11(12):4451–9.

    Article  PubMed  CAS  Google Scholar 

  13. Collins C, et al. Samarium-153-EDTMP in bone metastases of hormone refractory prostate carcinoma: a phase I/II trial. J Nucl Med. 1993;34(11):1839–44.

    PubMed  CAS  Google Scholar 

  14. Han SH, et al. The PLACORHEN study: a double-blind, placebo-controlled, randomized radionuclide study with (186)Re-etidronate in hormone-resistant prostate cancer patients with painful bone metastases. Placebo Controlled Rhenium Study. J Nucl Med. 2002;43(9):1150–6.

    PubMed  CAS  Google Scholar 

  15. Palmedo H, et al. Repeated bone-targeted therapy for hormone-refractory prostate carcinoma: randomized phase II trial with the new, high-energy radiopharmaceutical rhenium-188 hydroxyethylidenediphosphonate. J Clin Oncol. 2003;21(15):2869–75.

    Article  PubMed  CAS  Google Scholar 

  16. Silberstein EB, et al. Society of Nuclear Medicine procedure guideline for palliative treatment of painful bone metastases 3.0. 25 Jan 2003. http://interactive.snm.org/docs/pg_ch25_0403.pdf. Accessed 25 Jan 2012.

  17. Maxfield Jr JR, Maxfield JG, Maxfield WS. The use of radioactive phosphorus and testosterone in metastatic bone lesions from breast and prostate. South Med J. 1958;51(3):320–7.

    Article  PubMed  Google Scholar 

  18. Fowler Jr JE, Whitmore Jr WF. Considerations for the use of testosterone with systemic chemotherapy in prostatic cancer. Cancer. 1982;49(7):1373–7.

    Article  PubMed  Google Scholar 

  19. Tong EC, Rubenfeld S. The treatment of bone metastases with parathormone followed by radiophosphorus. Am J Roentgenol Radium Ther Nucl Med. 1967;99(2):422–34.

    PubMed  CAS  Google Scholar 

  20. Silberstein EB, Elgazzar AH, Kapilivsky A. Phosphorus-32 radiopharmaceuticals for the treatment of painful osseous metastases. Semin Nucl Med. 1992;22(1):17–27.

    Article  PubMed  CAS  Google Scholar 

  21. Burnet NG, Williams G, Howard N. Phosphorus-32 for intractable bony pain from carcinoma of the prostate. Clin Oncol (R Coll Radiol). 1990;2(4):220–3.

    Article  CAS  Google Scholar 

  22. Nair N. Relative efficacy of 32P and 89Sr in palliation in skeletal metastases. J Nucl Med. 1999;40(2):256–61.

    PubMed  CAS  Google Scholar 

  23. Blake GM, et al. Strontium-89 therapy: measurement of absorbed dose to skeletal metastases. J Nucl Med. 1988;29(4):549–57.

    PubMed  CAS  Google Scholar 

  24. Blake GM, et al. Sr-89 therapy: strontium kinetics in disseminated carcinoma of the prostate. Eur J Nucl Med. 1986;12(9):447–54.

    Article  PubMed  CAS  Google Scholar 

  25. Laing AH, et al. Strontium-89 chloride for pain palliation in prostatic skeletal malignancy. Br J Radiol. 1991;64(765):816–22.

    Article  PubMed  CAS  Google Scholar 

  26. Robinson RG, et al. Treatment of metastatic bone pain with strontium-89. Int J Rad Appl Instrum B. 1987;14(3):219–22.

    PubMed  CAS  Google Scholar 

  27. Lee CK, et al. Strontium-89 chloride (Metastron) for palliative treatment of bony metastases. The University of Minnesota experience. Am J Clin Oncol. 1996;19(2):102–7.

    Article  PubMed  CAS  Google Scholar 

  28. Quilty PM, et al. A comparison of the palliative effects of strontium-89 and external beam radiotherapy in metastatic prostate cancer. Radiother Oncol. 1994;31(1):33–40.

    Article  PubMed  CAS  Google Scholar 

  29. Porter AT, et al. Results of a randomized phase-III trial to evaluate the efficacy of strontium-89 adjuvant to local field external beam irradiation in the management of endocrine resistant metastatic prostate cancer. Int J Radiat Oncol Biol Phys. 1993;25(5):805–13.

    Article  PubMed  CAS  Google Scholar 

  30. Smeland S, et al. Role of strontium-89 as adjuvant to palliative external beam radiotherapy is questionable: results of a double-blind randomized study. Int J Radiat Oncol Biol Phys. 2003;56(5):1397–404.

    Article  PubMed  Google Scholar 

  31. Mertens WC, et al. Strontium-89 and low-dose infusion cisplatin for patients with hormone refractory prostate carcinoma metastatic to bone: a preliminary report. J Nucl Med. 1992;33(8):1437–43.

    PubMed  CAS  Google Scholar 

  32. Tu SM, et al. Strontium-89 combined with doxorubicin in the treatment of patients with androgen-independent prostate cancer. Urol Oncol. 1996;2(6):191–7.

    Article  PubMed  CAS  Google Scholar 

  33. Sciuto R, et al. Effects of low-dose cisplatin on 89Sr therapy for painful bone metastases from prostate cancer: a randomized clinical trial. J Nucl Med. 2002;43(1):79–86.

    PubMed  CAS  Google Scholar 

  34. Tu SM, et al. Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomised phase II trial. Lancet. 2001;357(9253):336–41.

    Article  PubMed  CAS  Google Scholar 

  35. Akerley W, et al. A multiinstitutional, concurrent chemoradiation trial of strontium-89, estramustine, and vinblastine for hormone refractory prostate carcinoma involving bone. Cancer. 2002;94(6):1654–60.

    Article  PubMed  CAS  Google Scholar 

  36. Bayouth JE, et al. Dosimetry and toxicity of samarium-153-EDTMP administered for bone pain due to skeletal metastases. J Nucl Med. 1994;35(1):63–9.

    PubMed  CAS  Google Scholar 

  37. Singh A, et al. Human pharmacokinetics of samarium- 153 EDTMP in metastatic cancer. J Nucl Med. 1989;30(11):1814–8.

    PubMed  CAS  Google Scholar 

  38. Farhanghi M, et al. Samarium-153-EDTMP: pharmacokinetic, toxicity and pain response using an escalating dose schedule in treatment of metastatic bone cancer. J Nucl Med. 1992;33(8):1451–8.

    PubMed  CAS  Google Scholar 

  39. Ahonen A, et al. Samarium-153-EDTMP in bone metastases. J Nucl Biol Med. 1994;38(4 Suppl 1):123–7.

    PubMed  CAS  Google Scholar 

  40. Turner JH, Claringbold PG. A phase II study of treatment of painful multifocal skeletal metastases with single and repeated dose samarium-153 ethylenediaminetetramethylene phosphonate. Eur J Cancer. 1991;27(9):1084–6.

    Article  PubMed  CAS  Google Scholar 

  41. Serafini AN, et al. Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: a double-blind placebo-controlled clinical trial. J Clin Oncol. 1998;16(4):1574–81.

    PubMed  CAS  Google Scholar 

  42. Resche I, et al. A dose-controlled study of 153Sm-ethylenediaminetetramethylenephosphonate (EDTMP) in the treatment of patients with painful bone metastases. Eur J Cancer. 1997;33(10):1583–91.

    Article  PubMed  CAS  Google Scholar 

  43. Hommeyer SH, Varney DM, Eary JF. Skeletal nonvisualization in a bone scan secondary to intravenous etidronate therapy. J Nucl Med. 1992;33(5):748–50.

    PubMed  CAS  Google Scholar 

  44. Krasnow AZ, et al. False-negative bone imaging due to etidronate disodium therapy. Clin Nucl Med. 1988;13(4):264–7.

    Article  PubMed  CAS  Google Scholar 

  45. Sandler ED, Parisi MT, Hattner RS. Duration of etidronate effect demonstrated by serial bone scintigraphy. J Nucl Med. 1991;32(9):1782–4.

    PubMed  CAS  Google Scholar 

  46. Pecherstorfer M, et al. Effect of clodronate treatment on bone scintigraphy in metastatic breast cancer. J Nucl Med. 1993;34(7):1039–44.

    PubMed  CAS  Google Scholar 

  47. Carrasquillo JA, et al. Alendronate does not interfere with 99mTc-methylene diphosphonate bone scanning. J Nucl Med. 2001;42(9):1359–63.

    PubMed  CAS  Google Scholar 

  48. Marcus CS, et al. Lack of effect of a bisphosphonate (pamidronate disodium) infusion on subsequent skeletal uptake of Sm-153 EDTMP. Clin Nucl Med. 2002;27(6):427–30.

    Article  PubMed  Google Scholar 

  49. Lam MG, et al. Combined use of zoledronic acid and 153Sm-EDTMP in hormone-refractory prostate cancer patients with bone metastases. Eur J Nucl Med Mol Imaging. 2008;35(4):756–65.

    Article  PubMed  CAS  Google Scholar 

  50. Storto G, et al. Combined therapy of Sr-89 and zoledronic acid in patients with painful bone metastases. Bone. 2006;39(1):35–41.

    Article  PubMed  CAS  Google Scholar 

  51. Anderson PM, et al. High-dose samarium-153 ethylene diamine tetramethylene phosphonate: low toxicity of skeletal irradiation in patients with osteosarcoma and bone metastases. J Clin Oncol. 2002;20(1):189–96.

    Article  PubMed  CAS  Google Scholar 

  52. Franzius C, Schuck A, Bielack SS. High-dose samarium-153 ethylene diamine tetramethylene phosphonate: low toxicity of skeletal irradiation in patients with osteosarcoma and bone metastases. J Clin Oncol. 2002;20(7):1953–4.

    PubMed  Google Scholar 

  53. de Klerk JM, et al. Pharmacokinetics of rhenium-186 after administration of rhenium-186-HEDP to patients with bone metastases. J Nucl Med. 1992;33(5):646–51.

    PubMed  Google Scholar 

  54. Bodei L, et al. EANM procedure guideline for treatment of refractory metastatic bone pain. Eur J Nucl Med Mol Imaging. 2008;35(10):1934–40.

    Article  PubMed  Google Scholar 

  55. Maxon HR, et al. Re-186(Sn) HEDP for treatment of multiple metastatic foci in bone: human biodistribution and dosimetric studies. Radiology. 1988; 166(2):501–7.

    PubMed  CAS  Google Scholar 

  56. Han SH, et al. 186Re-etidronate in breast cancer patients with metastatic bone pain. J Nucl Med. 1999;40(4):639–42.

    PubMed  CAS  Google Scholar 

  57. Sciuto R, et al. Metastatic bone pain palliation with 89-Sr and 186-Re-HEDP in breast cancer patients. Breast Cancer Res Treat. 2001;66(2):101–9.

    Article  PubMed  CAS  Google Scholar 

  58. Maxon III HR, et al. Re-186(Sn) HEDP for treatment of painful osseous metastases: initial clinical experience in 20 patients with hormone-resistant prostate cancer. Radiology. 1990;176(1):155–9.

    PubMed  Google Scholar 

  59. Maxon III HR, et al. Rhenium-186(Sn)HEDP for treatment of painful osseous metastases: results of a double-blind crossover comparison with placebo. J Nucl Med. 1991;32(10):1877–81.

    PubMed  Google Scholar 

  60. de Klerk JM, et al. Dose escalation study of rhenium-186 hydroxyethylidene diphosphonate in patients with metastatic prostate cancer. Eur J Nucl Med. 1994;21(10):1114–20.

    Article  PubMed  Google Scholar 

  61. de Klerk JM, et al. Phase 1 study of rhenium-186-HEDP in patients with bone metastases originating from breast cancer. J Nucl Med. 1996;37(2):244–9.

    PubMed  Google Scholar 

  62. Dafermou A, et al. A multicentre observational study of radionuclide therapy in patients with painful bone metastases of prostate cancer. Eur J Nucl Med. 2001;28(7):788–98.

    Article  PubMed  CAS  Google Scholar 

  63. O’Sullivan JM, et al. High activity Rhenium-186 HEDP with autologous peripheral blood stem cell rescue: a phase I study in progressive hormone refractory prostate cancer metastatic to bone. Br J Cancer. 2002;86(11):1715–20.

    Article  PubMed  Google Scholar 

  64. Bayer-HealthCare. Bayer’s investigational compound radium-223 chloride met its primary endpoint of significantly improving overall survival in a phase III trial in patients with castration-resistant prostate cancer that has spread to the bone. 6 June 2011. http://pharma.bayer.com/html/pdf/news_room115.pdf. Accessed 25 Jan 2012.

  65. Nilsson S, et al. Phase I study of AlpharadinTM (223Ra), an alpha-emitting bone-seeking agent in cancer patients with skeletal metastases. Oral presentation, annual congress of the EANM, Helsinki, September 8, 2004. Eur J Nucl Med Mol Imaging. 2004;31(S2):290.

    Google Scholar 

  66. Nilsson S, et al. Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol. 2007;8(7):587–94.

    Article  PubMed  CAS  Google Scholar 

  67. Nilsson S, et al. Alkaline phosphatase (ALP) normalization and overall survival in patients with bone metastases from castration-resistant prostate cancer (CRPC) treated with radium-223. ASCO Meet Abstr. 2011;29(15 Suppl):4620.

    Google Scholar 

  68. Nilsson S, et al. Radium-223 chloride, a first-in-class alpha-pharmaceutical with a benign safety profile for patients with castration-resistant prostate cancer (CRPC) and bone metastases: combined analysis of phase I and II clinical trials. ASCO Meet Abstr. 2010;28(15 Suppl):4678.

    Google Scholar 

  69. Wright HA, et al. Calculations of physical and chemical reactions produced in irradiated water containing DNA. Radiat Prot Dosimetry. 1985;13(1–4):133–6.

    CAS  Google Scholar 

  70. Kampf G. Induction of DNA double-strand breaks by ionizing radiation of different quality and their relevance for cell inactivation. Radiobiol Radiother (Berl). 1988;29(6):631–58.

    CAS  Google Scholar 

  71. Raju MR, et al. Radiobiology of alpha particles: III. Cell inactivation by alpha-particle traversals of the cell nucleus. Radiat Res. 1991;128(2):204–9.

    Article  PubMed  CAS  Google Scholar 

  72. Henriksen G, et al. Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice. J Nucl Med. 2003;44(2):252–9.

    PubMed  CAS  Google Scholar 

  73. Bruland OS, et al. High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: adjuvant or alternative to conventional modalities? Clin Cancer Res. 2006;12(20 Pt 2):6250s–7.

    Article  PubMed  CAS  Google Scholar 

  74. Tannock IF, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351(15):1502–12.

    Article  PubMed  CAS  Google Scholar 

  75. Algeta ASA and Bayer. A phase I/IIa study of safety and efficacy of Alpharadin® with docetaxel in patients with bone metastasis from castration-resistant prostate cancer. Clinicaltrials.gov NCT01106352.

    Google Scholar 

  76. Srivastava SC, et al. The development and in-vivo behavior of tin containing radiopharmaceuticals: I. Chemistry, preparation, and biodistribution in small animals. Int J Nucl Med Biol. 1985;12(3):167–74.

    Article  PubMed  CAS  Google Scholar 

  77. Krishnamurthy GT, et al. Tin-117m(4+)DTPA: pharmacokinetics and imaging characteristics in patients with metastatic bone pain. J Nucl Med. 1997;38(2):230–7.

    PubMed  CAS  Google Scholar 

  78. Swailem FM, et al. In-vivo tissue uptake and retention of Sn-117m(4+)DTPA in a human subject with metastatic bone pain and in normal mice. Nucl Med Biol. 1998;25(3):279–87.

    Article  PubMed  CAS  Google Scholar 

  79. Atkins HL, et al. Biodistribution of Sn-117m(4+)DTPA for palliative therapy of painful osseous metastases. Radiology. 1993;186(1):279–83.

    PubMed  CAS  Google Scholar 

  80. Srivastava SC, et al. Treatment of metastatic bone pain with tin-117m Stannic diethylenetriaminepentaacetic acid: a phase I/II clinical study. Clin Cancer Res. 1998;4(1):61–8.

    PubMed  CAS  Google Scholar 

  81. Paszkowski AL, Hewitt DJ, Taylor Jr A. Disseminated intravascular coagulation in a patient treated with strontium-89 for metastatic carcinoma of the prostate. Clin Nucl Med. 1999;24(11):852–4.

    Article  PubMed  CAS  Google Scholar 

  82. Sartor O, et al. Safety and efficacy of repeat administration of samarium Sm-153 lexidronam to patients with metastatic bone pain. Cancer. 2007;109(3):637–43.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Christopher J. Sweeney, from the Lank Center for Genitourinary Oncology at the Dana-Farber Cancer Institute—Harvard Medical School, for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain S. Abi-Ghanem M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abi-Ghanem, A.S., Zukotynski, K. (2013). Radionuclide Therapy of Bone Metastases. In: Aktolun, C., Goldsmith, S. (eds) Nuclear Medicine Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4021-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4021-5_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4020-8

  • Online ISBN: 978-1-4614-4021-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics