Skip to main content

Liquid Chromatography-Mass Spectrometric Analysis of Tropane Alkaloids in Mammalian Samples: Techniques and Applications

  • Chapter
  • First Online:
LC-MS in Drug Bioanalysis

Abstract

Tropane alkaloids (TA) are bioactive small molecules containing an esterified bicyclic tropane moiety. TA represent natural plant poisons and (semi)synthetic drugs, most of them (e.g. atropine, benzatropine, N-butyl scopolamine, cimetropium, homatropine, ipratropium, N-methyl scopolamine, scopolamine, tiotropium, trospium) antagonizing acetylcholine at muscarinic receptors (MR) and some of them (e.g. bemesetron, granisetron, scopolamine, tropisetron) antagonizing serotonin at the 5-HT3 receptor (5-HT3R). Therapeutic effects on MR include mydriasis, spasmolysis of the gastrointestinal tract, overactive bladder and of the respiratory system. Due to their binding to the 5-HT3R, TA are used as antiemetic to treat vomiting and nausea. In addition, a few TA interact with α1-adrenoreceptors thus being used to improve blood flow for the treatment of septic shock (e.g. anisodamine, anisodine). Furthermore, ingestion of plants containing natural TA such as hyoscyamine and scopolamine may cause fatal intoxications.

Determination of TA is required for pharmacokinetic and distribution studies, to elucidate biotransformation in vivo and in vitro as well as to identify and quantify any poison in toxicological and forensic samples. For this purpose LC-MS-based methods are often applied. The present chapter comprehensively introduces and discusses diverse LC-MS procedures for 19 natural and synthetic TA that are of relevance as drug and poison. Individual compounds are briefly introduced providing basic pharmacological information. Their physico-chemical properties are addressed exemplifying the impact on sample preparation (e.g. precipitation, liquid–liquid extraction, solid-phase extraction) and chromatographic separation. Mass analyzers and scan modes used following electrospray and atmospheric pressure chemical ionization are commented and statistical evaluation of their frequency of use is illustrated. MS/MS-based metabolite identification strategies applied to TA analysis are pointed out. At least diverse fields of applications are categorized to review several examples of PK, distribution, and biotransformation studies as well as toxicological analysis. Concluding remarks point out potential future trends and possibilities of LC-MS in clinical pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT3R:

5-Hydroxytryptamine (serotonin) receptor

ACN:

Acetonitrile

Ada:

Anisodamine

Adi:

Anisodine

AGP:

Alpha-glycoprotein

APCI:

Atmospheric pressure chemical ionization

API:

Active pharmaceutical ingredient

Atr:

Atropine

AtrE:

Atropinesterase

BBB:

Blood–brain barrier

Becg:

Benzoylecgonine

Beme:

Bemesetron

Benz:

Benztropine

BuS:

N-butyl-scopolamine

CID:

Collision-induced dissociation

Cim:

Cimetropium

CNS:

Central nervous system

Coc:

Cocaine

COPD:

Chronic obstructive pulmonary disease

Da:

Dalton

EBQ1Q2 :

Double focusing sector field mass spectrometer

EE:

Ethylacetate

ESI:

Electrospray ionization

Et2O:

Diethylether

FA:

Formic acid

FAB:

Fast atom bombardment

GIT:

Gastrointestinal tract

glucu:

Glucuronide conjugate

Gran:

Granisetron

Hep-SA:

Heptanesulfonic acid

HPLC:

High-performance liquid chromatography

hyo:

Hyoscyamine

IBS:

Irritable bowel syndrome

Ipra:

Ipratropium

iso:

Isocratic

IT:

Ion trap

lin range:

Linear range

LLE:

Liquid–liquid extraction

log P :

Logarithm of octanol/water partition coefficient

MeOH:

Methanol

Me-O-tBu:

Methyl-tert butyl ether

MeS:

Methylscopolamine

MRM:

Multiple reaction monitoring

MS:

Full scan mass spectrometry

MS/MS:

Tandem mass spectrometry, product ion scan

MW:

Mono-isotopic molecular weight

n.s.:

Not specified

OAc:

Acetate

OP:

Organophosphorus compound

QqQ:

Triple quadrupole mass spectrometer

QTA:

Quaternary tropane alkaloid

ref:

Reference

Sat:

Satropane

Scp:

Scopolamine

SIM:

Selected ion monitoring

Solv:

HPLC solvent

SPE:

Solid-phase extraction

SQ:

Single quadrupole mass spectrometer

T:

Temperature

TA:

Tropane alkaloid

Tio:

Tiotropium

Trop:

Tropisetron

Tros:

Trospium

TSP:

Thermospray

TTA:

Tertiary tropane alkaloids

WHO:

World Health Organisation

α1-AR:

α1-Adrenoreceptor

α7-nAChR:

α7-Nicotinic receptor

References

  1. Grynkiewicz G, Gadzikowska M (2008) Tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs. Pharmacol Rep 60:439–463

    CAS  Google Scholar 

  2. Li F, Sun S, Wang J, Wang D (1998) Chromatography of medicinal plants and Chinese traditional medicine. Biomed Chromatogr 12:78–85

    CAS  Google Scholar 

  3. Cook EB, Dennis M, Ochillo RF (1981) Application of thin layer, ion exchange, and high performance liquid chromatography to separate pharmacologically active components of an African arrow poison of plant origin. J Chromatogr 4:549–557

    CAS  Google Scholar 

  4. Zhu L, Yang LM, Cui YY, Zheng PL, Niu YY, Wang H, Lu Y, Ren QS, Wei PJ, Chen HZ (2008) Stereoselectivity of satropane, a novel tropane analog, on iris muscarinic receptor activation and intraocular hypotension. Acta Pharmacol Sin 29:177–184

    Google Scholar 

  5. Chen H, Chen Y, Du P, Han F (2007) Structural elucidation of in vivo and in vitro metabolites of anisodine by liquid chromatography-mass spectrometry. J Pharm Biomed Anal 44:773–778

    CAS  Google Scholar 

  6. Chen Y, Du P, Han F, Chen H (2007) Characterization of in vivo and in vitro metabolic pathway of anisodamine by liquid chromatography–tandem mass spectrometry. J Liq Chromatogr Rel Technol 30:1933–1949

    CAS  Google Scholar 

  7. Chen H, Chen Y, Wang H, Du P, Han F, Zhang H (2005) Analysis of scopolamine and its eighteen metabolites in rat urine by liquid chromatography–tandem mass spectrometry. Talanta 67:984–991

    CAS  Google Scholar 

  8. Balunas MJ, Kinghorn AD (2005) Dug discovery from medicinal plants. Life Sci 78:431–441

    CAS  Google Scholar 

  9. Christen P (2000) Tropane alkaloids: old drugs used in modern medicine. In: Rahman A (ed) Studies in natural products chemistry, vol 22, bioactive natural products (part C). Elsevier, Amsterdam

    Google Scholar 

  10. Ali-Melkkilä T, Kanto J, Isalo E (1993) Pharmacokinetics and related pharmacodynamics of anticholinergic drugs. Acta Anaesthesiol Scand 37:633–642

    Google Scholar 

  11. Beyer J, Peters FT, Kraemer T, Maurer HH (2007) Detection and validated quantification of toxic alkaloids in human blood plasma – comparison of LC-APCI-MS with LC-ESI-MS/MS. J Mass Spectrom 42:621–633

    CAS  Google Scholar 

  12. Sauvage FL, Gaulier JM, Lachatre G, Marquet P (2008) Pitfalls and prevention strategies for liquid chromatography–tandem mass spectrometry in the selected reaction-monitoring mode for drug analysis. Clin Chem 54:1519–1527

    CAS  Google Scholar 

  13. Bjornstad K, Hulten P, Beck O, Helander A (2009) Bioanalytical and clinical evaluation of 103 suspected cases of intoxications with psychoactive plant materials. Clin Toxicol 47:566–572

    Google Scholar 

  14. Gerber R, Naude TW, de Kock SS (2006) Confirmed Datura poisoning in a horse most probably due to D. ferox in contaminated tef hay. J S Afr Vet Assoc 77:86–89

    CAS  Google Scholar 

  15. Steenkamp PA, Harding NM, van Heerden FR, van Wyk BE (2004) Fatal Datura poisoning: identification of atropine and scopolamine by high performance liquid chromatography/photodiode array/mass spectrometry. Forensic Sci Int 145:31–39

    CAS  Google Scholar 

  16. Auriola S, Martinsen A, Oksman-Caldentey KM, Naaranlahti T (1991) Analysis of tropane alkaloids with thermospray high-performance liquid chromatography–mass spectrometry. J Chromatogr 562:737–744

    CAS  Google Scholar 

  17. Adams M, Wiedemann M, Tittel G, Bauer R (2006) HPLC-MS trace analysis of atropine in Lycium barbarum berries. Phytochem Anal 17:279–283

    CAS  Google Scholar 

  18. Jousse C, Vu TD, Tran TLM, Al Balkhi MH, Molinie R, Boitel-Conti M, Pilard S, Mathiron D, Hehn A, Bourgaud F, Gontier E (2010) Tropane alkaloid profiling of hydroponic Datura innoxia Mill. plants inoculated with Agrobacterium rhizogenes. Phytochem Anal 21:118–127

    CAS  Google Scholar 

  19. Banerjee S, Madhusudanan KP, Chattopadhyay SK, Rahman LU, Khanuja SPS (2008) Expression of tropane alkaloids in the hairy root culture of Atropa acuminata substantiated by DART mass spectrometric technique. Biomed Chromatogr 22:830–834

    CAS  Google Scholar 

  20. Humphrey AJ, O´Hagan D (2001) Tropane alkaloid biosynthesis. A century old problem unresolved. Nat Prod Rep 18:494–502

    CAS  Google Scholar 

  21. SPARC on-line calculator, release w4.6.1691–s4.6.1687, University of Georgia, USA http://archemcalc.com/sparc/smiles/smiles.cfm?CFID=22823&CFTOKEN=55164375. Accessed 11 Aug 2011

  22. Sangster J (1994) LOGKOW databank. Sangster Research Laboratories, Montreal, Quebec, Canada

    Google Scholar 

  23. Kajbaf M, Jahanshahi M, Pattichis K, Gorrod JW, Naylor S (1992) Rapid and efficient purification of cimetropium bromide and mifentidine drug metabolite mixtures derived from microsomal incubates for analysis by mass spectrometry. J Chromatogr 575:75–85

    CAS  Google Scholar 

  24. Tang FPW, Leung GNW, Wan TSM (2001) Analyses of quaternary ammonium drugs in horse urine by capillary electrophoresis–mass spectrometry. Electrophoresis 22:2201–2209

    CAS  Google Scholar 

  25. Molinspiration Cheminformatics, http://www.molinspiration.com/cgi-bin/properties. Accessed 11 Aug 2011

  26. U.S. Environmental Protection Agency, Mid-Continent Ecology Division. http://www.epa.gov/med/Prods_Pubs/smiles.htm. Accessed 11 Aug 2011

  27. Hansch C, Leo A, Hoekman D (1995) Exploring QSAR – hydrophobic, electronic, and steric constants. American Chemical Society, Washington, DC

    Google Scholar 

  28. Ingelse BA, van Dam RCJ, Vreeken RJ, Mol HGJ, Steijger OM (2001) Determination of polar organophosphorus pesticides in aqueous samples by direct injection using liquid chromatography–tandem mass spectrometry. J Chromatogr A 918:67–78

    CAS  Google Scholar 

  29. Renner UD, Oertel R, Kirch W (2005) Pharmacokinetics and pharmacodynamics in clinical use of scopolamine. Ther Drug Monit 27:655–665

    CAS  Google Scholar 

  30. Tytgat GN (2007) Hyoscine butylbromide, a review of its use in the treatment of abdominal cramping and pain. Drugs 67:1343–1357

    CAS  Google Scholar 

  31. Flynn RA, Glynn DA, Kennedy MP (2009) Anticholinergic treatment in airways diseases. Adv Ther 26:908–919

    CAS  Google Scholar 

  32. Evangelista S (2004) Quaternary ammonium derivatives as spasmolytics of irritable bowel syndrome. Curr Pharm Design 10:3561–3568

    CAS  Google Scholar 

  33. Antimuscarinic Agents (1996) In: Reynolds JEF (ed.) Martindale the extra pharmacopoeia, 31st edn. Royal Pharmaceutical Society, London

    Google Scholar 

  34. Chapple CR, Khullar V, Gabriel Z, Muston D, Bitoun CE, Weinstein D (2008) The effects of antimuscarinic treatments in overactive bladder: an update of a systematic review and meta-analysis. Eur Urol 54:543–562

    CAS  Google Scholar 

  35. Schmeller T, Sporer F, Sauerwein M, Wink M (1995) Binding of tropane alkaloids to nicotinic and muscarinic acetylcholine receptors. Pharmazie 50:493–495

    CAS  Google Scholar 

  36. Freeman AJ, Bountra C, Dale TJ, Gardner CJ, Twissell DJ (1993) The vomiting reflex and the role of 5-HT3 receptors. Anti-Cancer Drugs 4(Suppl 2):9–15

    CAS  Google Scholar 

  37. Gordon WP, Cheng H, Larsen DL, Ragner JA, Landmesser NG (1992) identification of urinary metabolites of 8-methyl-8-azabicyclo-[3,2,1] octan-3-yl 3,5-dichlorobenzoate (MDL 72,222) in the dog and monkey. Drug Metab Dispos 20:596–602

    CAS  Google Scholar 

  38. Poupko JM, Baskin SI, Moore E (2007) The pharmacological properties of anisodamine. J Appl Toxicol 27:116–121

    CAS  Google Scholar 

  39. Macor JE, Gurley D, Lanthorn T, Loch J, Mack RA, Mullen G, Tran O, Wright N, Gordon JC (2001) The 5-HT3 antagonist tropisetron (ICS 205-930) is a potent and selective α7 nicotinic receptor partial agaonist. Bioorg Med Chem Lett 11:319–321

    CAS  Google Scholar 

  40. Chen H, Wang H, Chen Y, Zhang H (2005) Liquid chromatography–tandem mass spectrometry analysis of anisodamine and its phase I and II metabolites in rat urine. J Chromatogr B 824:21–29

    CAS  Google Scholar 

  41. World Health Organization 16th list (updated) March 2010. http://www.who.int/medicines/publications/essentialmedicines/en/index.html. Accessed 11 Aug 2011

  42. Brown JH, Taylor P (1996) Muscarinic receptor agonists and antagonists. In: Hardman JG, Limbird LE (eds) The pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New York

    Google Scholar 

  43. McDonough JH, Shih TM (2007) Atropine and other anticholinergic drugs. In: Marrs TC, Maynard RL, Sidell FR (eds) Chemical warfare agents: toxicology and treatment, 2nd edn. John Wiley and Sons, New York

    Google Scholar 

  44. Abbara C, Bardot I, Cailleux A, Lallement G, Le Bouil A, Turcant A, Clair P, Diquet B (2008) High-performance liquid chromatography coupled with electrospray tandem mass spectrometry (LC/MS/MS) method for the simultaneous determination of diazepam, atropine and pralidoxime in human plasma. J Chromatogr B 874:42–50

    CAS  Google Scholar 

  45. Aaltonen L, Kanto J, Iisalo E, Pihlajamäki K (1984) Comparison of radioreceptor assay and radioimmunoassay for atropine: pharmacokinetic application. Eur J Clin Pharmacol 26:613–617

    CAS  Google Scholar 

  46. Kentala E, Kaila T, Iisalo E, Kanto J (1990) Intramuscular atropine in healthy volunteers: a pharmacokinetic and pharmacodynamic study. Int J Clin Pharmacol Ther Toxicol 28:399–404

    CAS  Google Scholar 

  47. John H, Mikler J, Worek F, Thiermann H (2012) Application of an enantioselective LC-ESI MS/MS procedure to determine R- and S-hyoscyamine after intravenous administration of atropine to swine. 4:194–198

    Google Scholar 

  48. Siluk D, Mager DE, Gronich N, Abernethy D, Wainer IW (2007) HPLC-atmospheric pressure chemical ionization mass spectrometric method for enantioselective determination of R, S-propranolol and R, S-hyoscyamine in human plasma. J Chromatogr B 859:213–221

    CAS  Google Scholar 

  49. John H, Eyer F, Zilker T, Thiermann H (2010) High-performance liquid-chromatographic tandem-mass spectrometric methods for atropinesterase-mediated enantioselective and chiral determination of R- and S-hyoscyamine in plasma. Anal Chim Acta 680:32–40

    CAS  Google Scholar 

  50. John H, Binder T, Höchstetter H, Thiermann H (2010) LC-ESI MS/MS quantification of atropine and six other antimuscarinic tropane alkaloids in plasma. Anal Bioanal Chem 396:751–763

    CAS  Google Scholar 

  51. Chen H, Chen Y, Du P, Han F, Wang H, Zhang H (2006) Sensitive and specific liquid chromatographic-tandem mass spectrometric assay for atropine and its eleven metabolites in rat urine. J Pharm Biomed Anal 40:142–150

    Google Scholar 

  52. Chen HX, Chen Y, Du P, Han FM (2007) LC-MS for identification and elucidation of the structure of in-vivo and in-vitro metabolites of atropine. Chromatographia 65:413–418

    CAS  Google Scholar 

  53. Boermanns PAMM, Go HS, Wessels AMA, Uges DRA (2006) Quantification by HPLC-MS/MS of atropine in human serum and clinical presentation of six mild-to-moderate intoxicated atropine-adulterated-cocaine users. Ther Drug Monit 28:295–298

    Google Scholar 

  54. Ariffin MM, Anderson RA (2006) LC/MS/MS analysis of quaternary ammonium drugs and herbicides in whole blood. J Chromatogr B 842:91–97

    CAS  Google Scholar 

  55. Björnstad K, Beck O, Helander A (2009) A multi-component LC-MS/MS method for detection of ten plant-derived psychoactive substances in urine. J Chromatogr B 877:1162–1168

    Google Scholar 

  56. Kintz P, Villain M, Evans J, Pujol ML, Salquebre G, Cirimele V (2007) A case of abuse in which children were forced to take tablets containing scopolamine: segmental analysis of hair for scopolamine by ultra performance liquid chromatography–tandem mass spectrometry. Forensic Toxicol 25:49–52

    CAS  Google Scholar 

  57. Kintz P, Villian M, Barguil Y, Charlot JY, Cirimele V (2006) Testing of atropine and scopolamine in hair by LC-MS-MS after Datura inoxia abuse. J Anal Toxicol 30:454–457

    CAS  Google Scholar 

  58. Homesley HD, Hahne WF, McLees B, Heck K, Barrett RJ, Lentz SS, Woodlief L, Lovelace JV (1993) Randomized comparison of the antiemetic efficacy of a serotonin type 3 receptor anatagonist (MDL 72,222) with a high-dose metoclopramide regimen. Am J Clin Oncol 16:175–179

    CAS  Google Scholar 

  59. He H, McKay G, Midha KK (1995) Phase I and II metabolites of benztropine in rat urine and bile. Xenobiotica 25:857–872

    CAS  Google Scholar 

  60. Schmitt KC, Zhen J, Kharkar P, Mishra M, Chen N, Dutta AK, Reith MEA (2008) Interactions of cocaine-, benztropine-, and GBR12909-like compounds with wild-type and mutant human dopamine transporters: molecular features that differentially determine antagonist-binding properties. J Neurochem 107:928–940

    CAS  Google Scholar 

  61. Lee HW, Park WS, Kim YW, Cho SH, Kim SS, Seo JH, Lee KT (2006) A rapid and sensitive liquid chromatography/positive ion tandem mass spectrometry method for the determination of cimetropium in human plasma by liquid–liquid extraction. J Mass Spectrom 41:855–860

    CAS  Google Scholar 

  62. Kajbaf M, Jahanshahi M, Lamb JH, Gorrod JW, Naylor S (1992) Bioanalytical applications of tandem mass spectrometry in the in vitro metabolism of the anticholinergic drug cimetropium bromide to detect differences in species metabolism. Xenobiotica 22:641–655

    CAS  Google Scholar 

  63. Aehle E, Dräger B (2010) Tropane alkaloid analysis by chromatographic and electrophoretic techniques: an update. J Chromatogr B 878:1391–1406

    CAS  Google Scholar 

  64. Maurer HH (2005) Multi-analyte procedures for screening for and quantification of drugs in blood, plasma, or serum by liquid chromatography–single stage or tandem mass spectrometry (LC-MS or LC-MS/MS) relevant to clinical and forensic toxicology. Clin Biochem 38:310–318

    CAS  Google Scholar 

  65. Rook EJ, Hillebrand MJX, Rosing H, van Ree J, Beijnen JH (2005) The quantitative analysis of heroin, methadone, and their metabolites and the simultaneous detection of cocaine, acetylcodeine and their metabolites in human plasma by high-performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B 824:213–221

    CAS  Google Scholar 

  66. Johansen SS, Bhatia HM (2007) Quantitative analysis of cocaine and its metabolites in whole blood and urine by high-performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B 852:338–344

    CAS  Google Scholar 

  67. Bouzas NF, Dresen S, Munz B, Weinmann W (2009) Determination of basic drugs of abuse in human serum by online extraction and LC-MS/MS. Anal Bioanal Chem 395:2499–2507

    Google Scholar 

  68. Kraemer T, Paul LD (2007) Bioanalytical procedures for determination of drugs of abuse in blood. Anal Bioanal Chem 388:1415–1435

    CAS  Google Scholar 

  69. Barroso M, Gallardo E, Quelroz JA (2009) Bioanalytical methods for the determination of cocaine and metabolites in human biological samples. Bioanalysis 1:977–1000

    CAS  Google Scholar 

  70. Olver IN (2005) Update on anti-emetics for chemotherapy-induced emesis. Int Med J 35:478–481

    CAS  Google Scholar 

  71. Jiang Y, Lin M, Fan G, Chen Y, Li Z, Zhao W, Wu Y, Hu J (2006) Rapid determination of granisetron in human plasma by liquid chromatography coupled to tandem mass spectrometry and its application to bioequivalence study. J Pharm Biomed Anal 42:464–473

    CAS  Google Scholar 

  72. Woo JS (2006) Nasal absorption studies of granisetron in rats using a validated high-performance liquid chromatographic method with mass spectrometric detection. Arch Pharm Res 30:778–784

    Google Scholar 

  73. Nirogi RVS, Kandikere VN, Shukla M, Mudigonda K, Maurya S, Boosi R (2006) Quantification of granisetron in human plasma by liquid chromatography coupled to electrospray tandem mass spectrometry. Biomed Chromatogr 20:888–897

    CAS  Google Scholar 

  74. Van Zyl JM, Derendinger B, Seifart HI, Van der Bijl P (2008) Comparative diffusion of drugs through bronchial tissue. Int J Pharm 357:32–36

    Google Scholar 

  75. Nussdorf JD, Berman EL (2000) Anisocoria associated with the medical treatment of irritable bowel syndrome. J Neuro Ophthalmol 20:100–101

    CAS  Google Scholar 

  76. Leach K, Loiacono RE, Felder CC, McKinzie DL, Mogg A, Shaw DB, Sexton PM, Christopoulos A (2010) Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychol Pharmacol 35:855–869

    CAS  Google Scholar 

  77. Callegari E, Malhotra B, Bungay PJ, Webster R, Fenner KS, Kempshall S, LaPerle JL, Michel MC, Kay GG (2011) A comprehensive non-clinical evaluation of the CNS penetration potential of antimuscarinic agents for the treatment of overactive bladder. Br J Clin Pharmacol 72:235–246

    CAS  Google Scholar 

  78. Yiu KCH, Ho ENM, Wan TSM (2004) Detection of quaternary ammonium drugs in equine urine by liquid chromatography-mass spectrometry. Chromatographia 49:S45–S50

    Google Scholar 

  79. Manfio JL, Dos Santos MB, Favreto WAJ, Hoffmann FI, Mertin AC (2009) Validation of a liquid chromatographic/tandem mass spectrometric method for the determination of scopolamine butylbromide in human plasma: application of the method to a bioequivalence study. J AOAC Int 92:1366–1372

    CAS  Google Scholar 

  80. Wang J, Jiang Y, Wang Y, Li H, Fawcett JP, Gu J (2007) Highly sensitive assay for tiotropium, a quaternary ammonium, in human plasma by high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1755–1758

    CAS  Google Scholar 

  81. Ding L, Tan W, Zhang Y, Shen J, Zhang Z (2008) Sensitive HPLC-ESI-MS method for the determination of tiotropium in human plasma. J Chromatogr Sci 46:445–449

    CAS  Google Scholar 

  82. Sanwald P, David M, Dow J (1996) Use of electrospray ionization liquid chromatography-mass spectrometry to study the role of CYP2D6 in the in vitro metabolism of 5-hydroxytryptamine receptor antagonist. J Chromatogr B 678:53–61

    CAS  Google Scholar 

  83. Deng P, Zhong D, Chen X (2009) Determination of tropisetron in human plasma by liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 49:848–852

    CAS  Google Scholar 

  84. Hotha KK, Bharathi DV, Kumar SS, Reddy YN, Chatki PK, Ravindranath LK, Jayaveera KN (2010) Determination of the quaternary ammonium compound trospium in human plasma by LC-MS/MS: application to a pharmacokinetic study. J Chromatogr B 878:981–986

    CAS  Google Scholar 

  85. Fu J, Fang C, Cui YY, Yang LM, Zhu L, Feng XM, Zheng PL, Lu Y, Chen HZ (2008) Quantitative determination of a novel enantiomeric tropane analog, (−)-satropane, in biological fluids using liquid chromatography/tandem mass spectrometry. Biomed Chromatogr 23:1044–1050

    Google Scholar 

  86. Bonhage MR, Chilcoat CD, Li Q, Melendez V, Flournoy WS (2008) Evaluation of two scopolamine and physostigmine pre-treatment regimens against nerve agent poisoning in the dog. J Vet Pharmacol Ther 32:146–153

    Google Scholar 

  87. Chen H, Chen Y, Du P, Han F (2008) Liquid chromatography–electrospray ionization ion trap mass spectrometry for analysis of in vivo and in vitro metabolites of scopolamine in rats. J Chromatogr Sci 46:74–80

    CAS  Google Scholar 

  88. Ahmed S, Sileno AP, deMeireles JC, Dua R, Pimplaskar HK, Xia WJ, Marinaro J, Langenback E, Matos FJ, Putcha L, Romeo VD, Behl CR (2000) Effect of pH and dose on nasal absorption of scopolamine hydrobromide in human subjects. Pharm Res 17:974–977

    CAS  Google Scholar 

  89. Al-Ghananeem AM, Malkawi AH, Crooks PA (2007) Scopolamine sublingual spray: an alternative route of delivery for the treatment of motion sickness. Drug Dev Ind Pharm 33:577–582

    CAS  Google Scholar 

  90. Xu A, Havel J, Linderholm K, Hulse J (1995) Development and validation of an LC/MS/MS method for the determination of l-hyoscyamine in human plasma. J Pharm Biomed Anal 14:33–42

    Google Scholar 

  91. Snyder LR (1978) Classification of the solvent properties of common liquid solvents. J Chromatogr Sci 16:223–234

    CAS  Google Scholar 

  92. Becker C, Worek F, John H (2010) Chromatographic analysis of toxic phosphylated oximes (POX): a brief overview. Drug Test Anal 2:460–468

    CAS  Google Scholar 

  93. John H, Blum MM (2012) Review on UV-spectroscopic, chromatographic and electrophoretic methods for the cholinesterase reactivating antidote pralidoxime (2-PAM) 4:179–193

    Google Scholar 

  94. Musshoff F, Madea B (2007) Analytical pitfalls in hair testing. Anal Bioanal Chem 388:1475–1494

    CAS  Google Scholar 

  95. Wada M, Nakashima K (2006) Hair analysis: an excellent tool for confirmation of drug abuse. Anal Bioanal Chem 385:413–415

    CAS  Google Scholar 

  96. Kanazawa H, Nagat Y, Matsushima Y, Takai N, Uchiyama H, Nishimura R, Takeuchi A (1993) Liquid chromatography–mass spectrometry for the determination of medetomidine and other anaesthetics in plasma. J Chromatogr 631:215–220

    CAS  Google Scholar 

  97. Oertel R, Richter K, Ebert U, Kirch W (2001) Determination of scopolamine in human serum and microdialysis samples by liquid chromatography–tandem mass spectrometry. J Chromatogr B 750:121–128

    CAS  Google Scholar 

  98. Stetina PM, Madai B, Kulemann V, Kirch W, Joukhadar C (2005) Pharmacokinetics of scopolamine in serum and subcutaneous adipose tissue in healthy volunteers. Int J Clin Pharmacol Ther 43:134–139

    CAS  Google Scholar 

  99. Oertel R, Richter K, Fauler J, Kirch W (2002) Increasing sample throughput in pharmacological studies by using dual-column liquid chromatography with tandem mass spectrometry. J Chromatogr A 948:187–192

    CAS  Google Scholar 

  100. Boppana V, Miller-Stein C, Schaefer WH (1996) Direct plasma liquid chromatographic-tandem mass spectrometric analysis of granisetron and its 7-hydroxy metabolite utilizing internal surface reversed-phase guard columns and automated column switching devices. J Chromatogr B 678:227–236

    CAS  Google Scholar 

  101. Machtejevas E, John H, Wagner K, Ständker L, Marko-Varga G, Forssmann WG, Bischoff R, Unger KK (2004) Automated multi-dimensional liquid chromatography: sample preparation and identification of peptides from human blood filtrate. J Chromatogr B 803:121–130

    CAS  Google Scholar 

  102. John H, Huynh KD, Hedtmann C, Walden M, Schulz A, Anspach FB, Forssmann WG (2005) In vitro degradation of the antimicrobial human peptide HEM-γ 130–146 in plasma analyzed by a validated quantitative LC-MS/MS procedure. Anal Biochem 341:173–186

    CAS  Google Scholar 

  103. John H, Walden M, Schäfer S, Genz S, Forssmann WG (2004) Analytical procedures for peptide quantification in pharmaceutical research by liquid chromatography-mass spectrometry. Anal Bioanal Chem 378:883–897

    CAS  Google Scholar 

  104. John H, Worek F, Thiermann H (2008) LC-MS based procedures for monitoring of toxic organophosphorus compounds and the verification of pesticide and nerve agent poisoning. Anal Bioanal Chem 391:97–116

    CAS  Google Scholar 

  105. John H, Preissner KT, Forssmann WG, Ständker L (1999) Novel glycosylated forms of human plasma endostatin and endostatin-related fragments of collagen XV. Biochemistry 38:10217–10224

    CAS  Google Scholar 

  106. John H, Forssmann WG (2001) Determination of the disulfide bond pattern of the endogenous and recombinant angiogenesis inhibitor endostatin by mass spectrometry. Rapid Commun Mass Spectrom 15:1222–1228

    CAS  Google Scholar 

  107. Thevis M, Vollmer DA (2012) Recent instrumental progress in mass spectrometry: advancing resolution, accuracy and speed of drug detection 4:242–245

    Google Scholar 

  108. Würtinger P, Oberacher H (2012) Evaluation of the performance of a tandem mass spectral library with mass spectral data extracted from literature 4:235–241

    Google Scholar 

  109. Sauvage FL, Saint-Marcoux F, Duretz B, Deporte D, Lachatre G, Marquet P (2006) Screening of drugs and toxic compounds with liquid chromatography–linear ion trap tandem mass spectrometry. Clin Chem 52:1735–1742

    CAS  Google Scholar 

  110. Gray TR, Shakleya DM, Huestis MA (2009) A liquid chromatography tandem mass spectrometry method for the simultaneous quantification of 20 drugs of abuse and metabolites in human meconium. Anal Bioanal Chem 393:1977–1990

    CAS  Google Scholar 

  111. Kjaergaard Bjork M, Nielsen MKK, Markussen LO, Klinke HB, Linnet K (2010) Determination of 19 drugs of abuse and metabolites in whole blood by high-performance liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 396:2393–2401

    Google Scholar 

  112. Peters FT, Drummer OH, Musshoff F (2007) Validation of new methods. Forensic Sci Int 165:216–224

    CAS  Google Scholar 

  113. Drummer OH (2007) Requirements for bioanalytical procedures in post-mortem toxicology. Anal Bioanal Chem 388:1495–1503

    CAS  Google Scholar 

  114. Schroff CD (1852) Über belladonna, atropin und daturin. Z KK Gesell Arzte Wien 3:211–242

    Google Scholar 

  115. Van Zutphen LFM (1974) Serum esterase genetics in rabbits. I. Phenotypic variation of the prealbumin esterases and classification of atropinesterase and cocainesterase. Biochem Genetics 12:309–326

    Google Scholar 

  116. Maurer HH (2005) Advances in analytical toxicology: the current role of liquid chromatography-mass spectrometry in drug quantification in blood and oral fluid. Anal Bioanal Chem 381:110–118

    CAS  Google Scholar 

  117. Maurer HH (2007) Current role of liquid chromatography–mass spectrometry in clinical and forensic toxicology. Anal Bioanal Chem 388:1315–1325

    CAS  Google Scholar 

  118. Mueller CA, Weinmann W, Dresen S, Schreiber A, Gergov M (2005) Development of a multi-target screening analysis for 301 drugs using QTrap liquid chromatography/tandem mass spectrometry system and automated library searching. Rapid Commun Mass Spectrom 19:1332–1338

    CAS  Google Scholar 

  119. Ondra P, Zednikova K, Valka I (2006) Detection and determination of abused hallucinogens in biological material. Neuro Endocrinol Lett 27(Suppl 2):125–129

    CAS  Google Scholar 

  120. Pietsch J, Günther J, Henle T, Dreßler J (2008) Simultaneous determination of thirteen plant alkaloids in a human specimen by SPE and HPLC. J Sep Sci 31:2410–2416

    CAS  Google Scholar 

  121. Papoutsis I, Nikolaou P, Athanaselis S, Stefanidou M, Pistos C, Spiliopoulou C, Maravelias C (2010) Mass intoxication with Datura innoxia – case series and confirmation by analytical toxicology. Clin Toxicol 48:143–145

    CAS  Google Scholar 

  122. Mackenzie AL, Pigott JFG (1971) Atropine overdose in three children. Br J Anaesth 43:1088–1090

    CAS  Google Scholar 

  123. Pietsch J, Koch I, Hermanns-Clausen M, Hüller G, Wagner R, Dressler J (2008) Pediatric plant exposures in Germany, 1998–2004. Clin Toxicol 46:686–691

    Google Scholar 

  124. Frascht M, Schneider S, Schuman M, Wennig R (2007) Formation of scopolamine from N-butyl-scopolamine bromide in cigarettes. J Anal Toxicol 31:220–223

    CAS  Google Scholar 

  125. Sticht G, Kaferstein H, Staak M (1989) Results of toxicological investigations of poisonings with atropine and scopolamine. Acta Med Leg Soc (Liege) 39:441–447

    CAS  Google Scholar 

  126. Da Matta Chasin AA, Midio AF (2000) Validation of an ion-trap gas chromatographic-mass spectrometric method for the determination of cocaine and metabolites and cocaethylene in post mortem whole blood. Forensic Sci Int 109:1–13

    Google Scholar 

  127. Kaplan MM, Register DC, Bierman AH, Risacher RL (1974) A nonfatal case of intentional scopolamine poisoning. Clin Toxicol 7:509–512

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald John .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

John, H. (2012). Liquid Chromatography-Mass Spectrometric Analysis of Tropane Alkaloids in Mammalian Samples: Techniques and Applications. In: Xu, Q., Madden, T. (eds) LC-MS in Drug Bioanalysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3828-1_11

Download citation

Publish with us

Policies and ethics