Skip to main content

Optical Properties of Metal Nanoclusters from an Atomistic Point of View

  • Chapter
  • First Online:
Metal Clusters and Nanoalloys

Abstract

Optical properties of metal nanoclusters are studied from a full quantum description. This quantum description allows for the inclusion of the atomistic structure of matter, a detail scarcely taken into account within the standard techniques used to study this problem. We present a novel approach in which quantum dynamics simulations are performed in order to study plasmon dynamics from which optical properties are determined. A detailed analysis of the influence of shape, size, surface condition, and molecular adsorbates on optical properties is carried out within this technique. Finally, near field optical properties are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In 1908, Mie proposed a solution of Maxwell equations to describe the extinction spectra of spherical particles of arbitrary size.

  2. 2.

    This is a standard mathematical approach used to express the functional around n 0 for small charge fluctuations, such as those arising from bonding.

  3. 3.

    For the case of DFTB, we need nine orbitals per site (one s orbital, three p orbitals, and five d orbitals) in order to represent metals such as Ag, Au, and Cu.

  4. 4.

    This is important when studying near-field effects as it is explained in Sect. 4.8.

  5. 5.

    The formula for calculating the on-site charges, in general, depends on the TB model.

  6. 6.

    The causality principle states that the effect is followed by the cause and not the reverse. It can be seen that for τ larger than t (cause before effect) the function Θ(t − τ) is 0. The advantage of introducing the function Θ(t − τ) is that it allows to extend the limits of the integral of (4.21) to infinity.

  7. 7.

    This expression is also valid for a generic operator O(t) where we have: \(\langle O(t)\rangle ={ \int \nolimits \nolimits }_{-\infty }^{\infty }- \frac{\mathrm{i}} {\hslash } \left < \left [{O}_{H}(t - \tau ),O\right ]\right >V (\tau )\mathrm{d}\tau \).

  8. 8.

    The same procedure was carried out for Ag yielding a value of ε = 3.015.

  9. 9.

    The aspect ratio of a molecular system, in general, is defined by Bonnett et al. as the ratio between the longest and shortest vertex of a regular parallelepiped of minimum volume, that can host the whole molecular system [54].

  10. 10.

    This is a weighted average by the peak intensity.

  11. 11.

    This function also applies for icosahedral particles.

  12. 12.

    The field isosurface is the surface for which we have a constant value for the amplification factor.

  13. 13.

    These simulations were performed by E. Perassi and E. Coronado of the Physical Chemistry Department, Faculty of Chemistry, UNC, as part of a collaborative work.

References

  1. Kreibig U, Volmer M (1995) Optical properties of metal clusters. Springer, New York

    Google Scholar 

  2. Kelly LK, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  3. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  4. Link S, El-Sayed MA (2000) Int Rev Phys Chem 19:409

    Article  CAS  Google Scholar 

  5. Link S, El-Sayed MA (2004) Annu Rev Phys Chem 54:331

    Article  Google Scholar 

  6. Lee K, El-Sayed MA (2006) J Phys Chem B 110:19220

    Article  CAS  Google Scholar 

  7. Berciaud S, Cognet L, Tamarat P, Lounis B (2005) Nano Lett 5:515

    Article  CAS  Google Scholar 

  8. Aikens CM, Li S, Schatz GC (2008) J Phys Chem C 112:11272–11279

    Article  CAS  Google Scholar 

  9. Yurkin MA, Hoekstra AG (2007) J Quant Spectros Radiative Tran 106:558–589

    Article  CAS  Google Scholar 

  10. Jain PK, Lee K, El-Sayed IH, El-Sayed MA (2006) J Phys Chem B 110:7238

    Article  CAS  Google Scholar 

  11. Johnson PB, Christy RW (1972) Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  12. Hu M, Petrova H, Sekkinen AR, Chen J, McLellan JM, Li ZY, Marquez M, Li X, Xia Y, Hartland GV (2006) J Phys Chem B 110:19923

    Article  CAS  Google Scholar 

  13. Sherry LJ, Jin R, Mirkin CA, Schatz GC, Van Duyne RP (2006) Nano Lett 6:2060

    Article  CAS  Google Scholar 

  14. Van Dijk MA, Tchebotareva AL, Orrit M, Lippitz M, Berciaud S, Lasne D, Cognet L, Lounis B (2006) Phys Chem Chem Phys 8:3486

    Article  Google Scholar 

  15. Sönnischen C, Franzl T, Wilk T, Von Plessen G, Feldman J (2002) Phys Rev Lett 88:077402

    Article  Google Scholar 

  16. Arbouet A, Christifilos D, Del Fatti N, Vallée F, Huntzinger JR, Arnaud L, Billaud P, Broyer M (2004) Phys Rev Lett 93:127401

    Article  CAS  Google Scholar 

  17. Klar T, Perner M, Grosse S, Von Plessen G, Sprikl W, Feldmann J (1998) Phys Rev Lett 80:4249

    Article  CAS  Google Scholar 

  18. Bosbach J, Hendrich C, Stietz F, Vartanyan T, Trãger F (2002) Phys Rev Lett 89:257404

    Article  CAS  Google Scholar 

  19. Muskens OL,Del Fatti N, Vallee F (2006) Nano Lett 6:552

    Article  CAS  Google Scholar 

  20. Kuhn S, Hakanson U, Rogobete L, Sandoghdar V (2006) Phys Rev Lett 97:017402

    Article  Google Scholar 

  21. Haes AJ, Zou S, Zhao J, Schatz GC, Van Duyne RP (2006) J Am Chem Soc 128:10905

    Article  CAS  Google Scholar 

  22. Watanabe K, Menzel D, Nilius N, Freund HJ (2006) Chem Rev 106:4301

    Article  CAS  Google Scholar 

  23. Qiu L, Larson TA, Smith D, Vitkin E, Modell MD, Korgel BA, Sokolov KV, Hanlon EB, Itzkan I (2008) App Phys Lett 93:1–3

    Google Scholar 

  24. Runge E, Gross EKU (1984) Phys Rev Lett 52:997

    Article  CAS  Google Scholar 

  25. Tsolakidis A, Sánchez-Portal D, Martin RM (2002) Phys Rev B 66:235416

    Article  Google Scholar 

  26. Yabana K, Bertsch GF (1996) Phys Rev B 54:4484–4487

    Article  CAS  Google Scholar 

  27. Castro A, Marques MAL, Alonso JA, Rubio A (2004) J Comp Theor Nanoscience 1:1057

    Google Scholar 

  28. Blase X, Ordejón P (2004) Phys Rev B 69:085111

    Article  Google Scholar 

  29. Baer R, Neuhauser D, Weiss S (2004) Nano Lett 4:85

    Article  CAS  Google Scholar 

  30. Paxton AT (2009) Multiscale Simul Methods Mol Sci 42:145–176

    Google Scholar 

  31. Levine IN (2000) Quantum Chemistry, 5th ed. Prentice Hall.

    Google Scholar 

  32. Finnis MW (2004) Interatomic forces in condensed matter. Oxford series on materials modelling. Oxford University Press, Oxford

    Google Scholar 

  33. Porezag D, Frauenheim Th, Köhler Th, Seifer G, Kaschner R (1995) Phys Rev B 51:12947–12957

    Article  CAS  Google Scholar 

  34. Aradi B, Hourahine B, Frauenheim Th (2007) J Phys Chem A 111:5678–5684

    Article  CAS  Google Scholar 

  35. DFTB + Version 1.1 USER MANUAL. http://www.dftb-plus.info/

  36. Elstner M, Porezag D, Jungnickel G, Haugk M, Frauenheim Th, Suhai S, Seifer G (1998) Phys Rev B 58:7260–7267

    Article  CAS  Google Scholar 

  37. Frauenheim Th, Seifert G, Elstner Th, Köhler C, Amkreutz M, Stenberg M, Hajmal Z, Di Carlo A, Suhai S (2002) J Phys Cond Matt 14:3015–3047

    Article  CAS  Google Scholar 

  38. Foulkes W, Haydock R (1989) Phys Rev B 39:12520–12536

    Article  Google Scholar 

  39. Sutton AP, Todorov TN, Cackewell MJ, Hoekstra J (2001) Phyl Mag A 81:1833

    Article  CAS  Google Scholar 

  40. Todorov TN (2001) J Phys Cond Matt 13:10125–10148

    Article  CAS  Google Scholar 

  41. Finnis MW, Paxton AT, Methfessel M, van Schilfgaarde M (1998) Phys Rev Lett 81:5149

    Article  CAS  Google Scholar 

  42. Schlosshauer M (2007) Decoherence, and the quantum to classical transition Springer, Berlin

    Google Scholar 

  43. Breuer HP, Petruccione F (2002) The theory of open quantum systems Oxford University Press, Oxford

    Google Scholar 

  44. Bushong N, Gamble J, Di Ventra M (2007) Nano Lett 7:1789–1792

    Article  CAS  Google Scholar 

  45. Mukamel S (1995) Principles of nonlinear optical spectroscopy. Oxford series in optical and imaging sciences. Oxford University Press, New York

    Google Scholar 

  46. Gerry CC, Knight PL (2005) Introductory quantum optics. Cambridge university press, Cambridge

    Google Scholar 

  47. Bracewell RN (2000) The fourier transform and its applications. McGraw-Hill, New York

    Google Scholar 

  48. Merzbacher E (1998) Quantum mechanics. Wiley, New York

    Google Scholar 

  49. Miller KJ (1990) J Am Chem Soc 112:8543–8551

    Article  CAS  Google Scholar 

  50. Sottile F (2003) Response functions of semiconductors and insulators: from the Bethe-Salpeter equation to time-dependent density functional theory. Tesis Doctoral, École polytechnique, Palaiseau, France

    Google Scholar 

  51. Fiolhais C, Nogueira F, Marques M (2003) A primer in density functional theory. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  52. Negre CFA, Sánchez CG (2008) J Chem Phys 129:034710

    Article  Google Scholar 

  53. Molina RA, Weinmann D, Jalabert RA (2002) Phys Rev B 65:155427

    Article  Google Scholar 

  54. Wise SA, Bonnet WJ, Guenther FR, May WE (1981) J Chromatogr Sci 19:248

    Google Scholar 

  55. Tedeschini R, Consinni V (2009) Molecular descriptors for Chemoinformatics. Methods and principles in Medicinal Chemistry, Series editions, vol. 41, WILLEY-VCH Verlag GmbH & Co. KgaA, Weinheim.

    Google Scholar 

  56. Ahrenkile SP, Yu PR, Murphy JE (2008) J Microsc 230:382–387

    Article  Google Scholar 

  57. Xu X, Saghi Z, Gay R, Möbus G (2007) Nanotechnology 18:1–8

    Google Scholar 

  58. Martin TP (1996) Phys Rep 273:199–241

    Article  CAS  Google Scholar 

  59. Wales D (2003) Energy landscapes: applications to clusters, biomolecules and glasses. Cambridge University Press, Cambridge

    Google Scholar 

  60. Wales D (2004) Energy landscapes: applications to clusters, biomolecules and glasses. Cambridge University Press, Cambridge

    Google Scholar 

  61. Hubenthal F, Ziegler T, Hendrich C, Alschinger M, Trager F (2005) J Phys Chem 34:165–168

    CAS  Google Scholar 

  62. Zhang J, Tang Y, Weng L, Ouyang M (2009) Nano Lett 9:4061–4065

    Article  CAS  Google Scholar 

  63. F. Hubenthal, N. Borg and F. Träger, Appl Phys B (2008) 93: 39–45

    Article  CAS  Google Scholar 

  64. Mariscal M, Dassie SA (eds) (2007) Recent advances in nanoscience. Research Signpost, Trivandrum, India

    Google Scholar 

  65. Daniel M-C, Astruc D (2004) Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  66. Nagarajan R, Hatton TA (eds) (2008) Nanoparticles synthesis, stabillization, passivation and functionalization (Acs Symposium Series). Oxford University Press, USA, Washington, DC

    Google Scholar 

  67. Alivisatos P (2004) Nature Biotech 22:47–52

    Article  CAS  Google Scholar 

  68. Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) J Chem Soc Chem Comm 16: 1655–1656

    Article  Google Scholar 

  69. Templeton AC, Chen S, Gross SM, Murray RW (1999) Langmuir 15:66–76

    Article  CAS  Google Scholar 

  70. Negre CFA, Sánchez CG (2010) Chem Phys Lett 494:255–259

    Article  CAS  Google Scholar 

  71. Hövel H, Fritz S, Hilger A, Kreibig U, Vollmer M (1993) Phys Rev B 48:18178–18188

    Article  Google Scholar 

  72. Leroux Y, Lacroix JC, Fave C, Trippe G, Flidj N, Aubard J, Hohenau A, Krenn JR (2008) ACS Nano 2:728–732

    Article  CAS  Google Scholar 

  73. Hendrich C, Bosbach J, Stietz F, Hubenthal F, Vartanyan T, Träger F (2003) Appl Phys B Laser Optic 76:869

    Article  CAS  Google Scholar 

  74. Kreibig U (2008) App Phys B 93:79–89

    Article  CAS  Google Scholar 

  75. Hubenthal F (2007) Prog Surf Sci 82:378–387

    Article  CAS  Google Scholar 

  76. Lica GC, Zelakiewicz BS, Constantinescu M (2004) J Phys Chem B 108:19896–19900

    Article  CAS  Google Scholar 

  77. Su YH, Chang S-H, Teoh LG, Chu W-H, Tu S-L (2009) J Phys Chem C 113:3923–3928

    Article  CAS  Google Scholar 

  78. Guerrero E, Muñoz Márquez MA, García MA, Crespo P, Fernández-Pinel E, Hernando A, Fernández A (2008) Nanotechnology 19:175701

    Google Scholar 

  79. Garcia M, de La Venta J, Crespo P, LLopis J, Penadés S, Fernández A, Hernando A (2005) Phys Rev B 72:2–5

    Google Scholar 

  80. Wiederrecht GP, Wurtz GA, Hranisavljevic J (2004) Nano Lett 4:2121–2125

    Article  CAS  Google Scholar 

  81. Novotny L, Hecht B (2006) Principles of nano-optics, Cambridge University Press

    Google Scholar 

  82. Schatz GC, Young MA, Van Duyne RP (2006) Topics Appl Phys 103:19–46

    Article  CAS  Google Scholar 

  83. Ferraro JR, Nakamoto K (1994) Introductory Raman spectroscopy, Elsevier Science

    Google Scholar 

  84. Michaels AM, Nirmal M, Brus LE (1999) J Am Chem Soc 121:9932–9939

    Article  CAS  Google Scholar 

  85. Fleischmann MP, Hendra J, McQuillan AJ (1974) Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  86. Otto A (2002) J Ramman Spec 33:593–598

    Article  CAS  Google Scholar 

  87. Polubotko AM (1999) J Optic A Pure Appl Optic 1:L18–L20

    Article  Google Scholar 

  88. Yoshihiro M, Ishikawa M, Futamata M (2001) Anal Sci Jpn Soc Anal Chem 17:1181–1183

    Google Scholar 

  89. Zou S, Schatz GC (2005) Chem Phys Lett 403:62–67

    Article  CAS  Google Scholar 

  90. Sherry LJ, Mirkin CA, Schatz GC, Van Duyne RP (2006) Nano Lett 6:2060–2065

    Article  CAS  Google Scholar 

  91. Perassi EM, Canali LR, Coronado EA (2009) J Phys Chem C 113:6315–6319

    Article  CAS  Google Scholar 

  92. Serway RA (1999) Principles of physics, 6th edn., vol. II. Thomson Learning ISBN 10: 0030206693 / 0-03-020669-3 ISBN 13: 9780030206696

    Google Scholar 

  93. Zuloaga J, Prodan E, Nordlander P (2009) Nano Lett 9:887–891

    Article  CAS  Google Scholar 

  94. Danckwerts M, Novotny L (2007) Phys Rev Lett 98:2614

    Article  Google Scholar 

  95. Marhaba S, Bachelier G, Bonnet C, Broyer M, Cottacin E, Grillet N, Lermé J, Vialle J-L, Pellarin M (2009) J Phys Chem C 113:4349–4356

    Article  CAS  Google Scholar 

  96. Hao E, Schatz GC (2004) J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian F. A. Negre .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Negre, C.F.A., Sánchez, C.G. (2013). Optical Properties of Metal Nanoclusters from an Atomistic Point of View. In: Metal Clusters and Nanoalloys. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3643-0_4

Download citation

Publish with us

Policies and ethics